REGULATION (EU) NO 528/2012 CONCERNING THE MAKING AVAILABLE ON THE MARKET AND USE OF BIOCIDAL PRODUCTS

Assessment of ACTIVE SUBSTANCES

ASSESSMENT REPORT

FORMIC ACID

Product type 4 Food and feed area

EC Number : 200-579-1

CAS Number : 64-18-6

Applicant : Formic Acid Task Force (BASF SE, Kemira Oyj)

Contact details of evaluating CA: BELGIUM

Date : 15/10/2022

TABLE OF CONTENTS

T/	TABLE OF CONTENTS 2		
1	STATEMENT OF SUBJECT MATTER AND PURPOSE	8	
2	ASSESSMENT REPORT	10	
SL	JMMARY	10	
1	PRESENTATION OF THE ACTIVE SUBSTANCE	10	
	1.1 IDENTITY OF THE ACTIVE SUBSTANCE	10	
	1.2 INTENDED USES AND EFFECTIVENESS	10	
	1.3 CLASSIFICATION AND LABELLING		
	1.3.1 Classification and labelling for the active substance		
	1.3.1.1 Current classification and labelling		
	1.3.1.2 Proposed classification and labelling		
	1.3.2 Classification and labelling for the representative product(s) 1.3.2.1 Proposed classification and labelling		
	1.3.2.2 Packaging of the biocidal product		
_			
2	SUMMARY OF THE HUMAN HEALTH RISK ASSESSMENT	18	
	2.1 SUMMARY OF THE ASSESMENT OF EFFECTS ON HUMAN HEALTH		
	2.2 REFERENCE VALUES		
	2.3 RISK CHARACTERISATION	21	
3	SUMMARY OF THE ENVIRONMENTAL RISK ASSESSMENT	26	
	3.1 FATE AND BEHAVIOUR IN THE ENVIRONMENT	26	
	3.2 EFFECTS ASSESSMENT		
	3.3 EXPOSURE ASSESSMENT	27	
	3.4 RISK CHARACTERIZATION	28	
4	ASSESSMENT OF EXCLUSION, SUBSTITUION CRITERIA AND POP	29	
P/	ART A : ASSESSMENT OF INTRINSIC PROPERTIES AND EFFECTS OF THE ACTIVE SUBSTANCE		
1	GENERAL SUBSTANCE INFORMATION	30	
	1.1 IDENTIFICATION OF THE SUBSTANCE		
	1.1 IDENTIFICATION OF THE SUBSTANCE. 1.2 COMPOSITION OF THE SUBSTANCE (REFERENCE SPECIFICATIONS).		
	1.3 PHYSICAL AND CHEMICAL PROPERTIES OF THE ACTIVE SUBSTANCE		
	1.4 Physical hazards and respective characteristics		
	1.6 ANALYTICAL METHODS FOR DETECTION AND IDENTIFICATION		
2	EFFECTS AGAINST TARGET ORGANISMS		
	2.1 FUNCTION AND FIELD OF USE ENVISAGED	47	
	2.2 INTENDED USES		
	2.3 SUMMARY ON EFFICACY	-	
	2.3.1 Efficacy		
	2.3.2 Mode of action		
	2.3.3 Resistance		
	2.4 CONCLUSION ON EFFICACY		
3	ASSESSMENT OF EFFECTS ON HUMAN HEALTH	52	
	3.1 TOXICOKINETICS	52	
	3.1.1 Short summary of the toxicokinetic information		
	3.1.2 Values and conclusions used for the risk assessment		

3.2 Ac	UTE TOXICITY	70
3.2.1	Acute oral toxicity	
3.2.2	Acute dermal toxicity	
3.2.3	Acute inhalation toxicity	73
3.2.4	Overall conclusion on acute toxicity	
3.3 Irf	TATION AND CORROSION	
3.3.1	Skin corrosion and irritation	77
3.3.2	Eye irritation	81
3.3.3	Respiratory tract irritation	
3.3.4	Overall conclusion on corrosion and irritation	
3.4 Se	NSITISATION	
3.4.1	Skin sensitisation	
3.4.2	Respiratory sensitisation	
3.4.3	Overall conclusion on sensitisation	
3.5 Sн	ORT TERM REPEATED DOSE TOXICITY	93
3.5.1	Short-term oral toxicity	
3.5.2	Short-term dermal toxicity	
3.5.3	Short-term inhalation toxicity	
3.5.4	Overall conclusion on short-term repeated dose toxicity	
3.6 S∪	B-CHRONIC REPEATED DOSE TOXICITY	96
3.6.1	Sub-chronic oral toxicity	
3.6.2	Sub-chronic dermal toxicity	
3.6.3	Sub-chronic inhalation toxicity	
3.6.4	Overall conclusion on sub-chronic repeated dose toxicity	
3.7 Lo	NG-TERM REPEATED DOSE TOXICITY	
3.7.1	Long-term oral toxicity	
3.7.2	Long-term dermal toxicity	
3.7.3	Long-term inhalation toxicity	
3.7.4	Overall conclusion on long-term repeated dose toxicity	
3.8 Ge	NOTOXICITY	
3.8.1	In vitro	
3.8.2	In vivo	
3.8.3	Overall conclusion on genotoxicity	
3.9 CA	RCINOGENICITY	
3.10 Re	PRODUCTIVE TOXICITY	
3.10.1	Developmental toxicity	
3.10.2	Fertility	
3.10.3	Effects on or via lactation	
3.10.4	Overall conclusion on reproductive toxicity	
3.11 NE	UROTOXICITY	
3.12 IM	MUNOTOXICITY	152
3.13 Dis	RUPTION OF THE ENDOCRINE SYSTEM	
STEP 1	- Gathering of all relevant information	
STEP 2	Assemble and assess lines of evidence for endocrine activity and adversity	
	- Sufficiency of the dataset	
STEP 4	Initial analysis of the evidence	
	RTHER HUMAN DATA	
3.15 OT	HER DATA	
4 ENVIRO	DNMENTAL EFFECT ASSESSMENT	200
4.1 FA	TE AND DISTRIBUTION IN THE ENVIRONMENT	
4.1.1	Degradation	
4.1.1	-	
4.1.1	1 Abiotic degradation	
	1 Abiotic degradation .1.1.1 Hydrolysis	
4.1 4.1	.1.1.1 Hydrolysis .1.1.2 Phototransformation in water	
4.1 4.1	.1.1.1 Hydrolysis .1.1.2 Phototransformation in water .1.1.3 Estimated photo-oxidation in air	

	4.1.1.2.1	Biodegradability (ready/inherent)	204
	4.1.1.3 Ra	te and route of degradation including identification of metabolites and degradation products	
	4.1.1.3.1	Biological sewage treatment	
	4.1.1.3.1	6	
	4.1.1.3.1		
	4.1.1.3.1		
	4.1.1.3.2	Biodegradation in freshwater	
	4.1.1.3.2		
	4.1.1.3.2 4.1.1.3.3	2.2 Water/sediment degradation test Biodegradation in seawater	
	4.1.1.3.3	-	
	4.1.1.3.4	Higher tier degradation study	
	4.1.1.3.5	Biodegradation during manure storage	
	4.1.1.3.6	Biotic degradation in soil	
		ibution	
		sorption onto/desorption from soils	
		gher tier soil adsorption studies	
	4.1.3 Bioa	ccumulation	
		easured aquatic bioconcentration	
		imated aquatic bioconcentration	
	4.1.3.3 Me	easured terrestrial bioconcentration	225
	4.1.3.4 Est	imated terrestrial bioconcentration	226
	4.1.4 Mon	itoring data	
4	4.2 EFFECTS ON	ENVIRONMENTAL ORGANISMS	
		osphere	
	4.2.2 Sewa	nge treatment plant (STP)	
		itic compartment	
		eshwater compartment	
	4.2.3.1.1	Acute toxicity (freshwater)	
	4.2.3.1.2		
	4.2.3.1.2	L.2 Invertebrates (daphnia magna)	
	4.2.3.1.2	L.3 Algae	233
	4.2.3	1.1.3.1 Green algae	
		1.1.3.2 Cyanobacteria or diatoms	
		Chronic toxicity (freshwater)	
		diment compartment	
	4.2.3.2.1	Acute toxicity (freshwater sediment)	
	4.2.3.2.2 4.2.3.3 Ma	Chronic toxicity (freshwater sediment) arine compartment	
	4.2.3.3	Acute toxicity (seawater)	
	4.2.3.3.1		
	4.2.3.3.1		
	4.2.3.3.1		
	4.2.3.3.2	Chronic toxicity (seawater)	
	4.2.3.4 Se	a sediment compartment	
	4.2.3.4.1	Acute toxicity (sea sediment)	
	4.2.3.4.2	Chronic toxicity (sea sediment)	
	4.2.3.5 Hig	gher tier studies on aquatic organisms	
		estrial compartment	
	4.2.5 Grou	ndwater	245
		and mammals	
	4.2.7 Prim	ary and secondary poisoning	247
	4.2.7.1 Pri	mary poisoning	
		condary poisoning	
4		DISRUPTING PROPERTIES	-
4	4.4 DERIVATION	N OF PNECS	251
5	ASSESSMENT	DF EXCLUSION CRITERIA, SUBSTITUTION CRITERIA AND POP	253
ļ	5.1 Exclusion	CRITERIA	
-		ssment of CMR properties	
		ssment of endocrine disrupting properties	

	5.	1.3 PBT Assessment (following Annex XIII to Regulation (EC) No 1907/2006)	.255
		5.1.3.1 Assessment of persistence	. 255
		5.1.3.1.1 Screening	
		5.1.3.2 Assessment	
		5.1.3.3 Assessment of bioaccumulation	
		5.1.3.3.1 Screening 5.1.3.3.2 Assessment	
		5.1.3.4 Assessment of toxicity	
		5.1.3.4.1 Screening	
		5.1.3.4.2 Assessment	. 257
		5.1.3.5 Summary and overall conclusions on PBT or vPvB properties	
		5.1.3.5.1 Summary	
		5.1.3.5.2 Overall conclusion:	
	5.2	SUBSTITUTION CRITERIA	
	5.3	ASSESSMENT OF LONG-RANGE ENVIRONMENTAL TRANSPORTATION AND IMPACT ON ENVIRONMENTAL COMPARTMENTS	.259
PA	ART E	3 : EXPOSURE ASSESSMENT AND EFFECTS OF THE ACTIVE SUBSTANCE IN THE BIOCIDAL PRODUCT(S)	260
6	G	ENERAL PRODUCT INFORMATION	260
	6.1	IDENTIFICATION OF THE PRODUCT	260
	6.2	COMPLETE QUALITATIVE AND QUANTITATIVE COMPOSITION OF THE BIOCIDAL PRODUCT	
	6.3	PHYSICAL, CHEMICAL AND TECHNICAL PROPERTIES.	
	6.4	HAZARD IDENTIFICATION FOR PHYSICAL AND CHEMICAL PROPERTIES	
	6.5	Analytical methods for detection and identification	
7		FICACY	
	7.1		
	7.2		
	7.3 7.4	Resistance Conclusion on efficacy	
	7.4	CONCLUSION ON EFFICACY	. 291
0			202
8	Н	UMAN EXPOSURE ASSESSMENT	292
-	8.1	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT.	.294
-	8.1 8.2	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT . LIST OF SCENARIOS	.294 .296
	8.1 8.2 8.3	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT . LIST OF SCENARIOS INDUSTRIAL EXPOSURE	.294 .296 .296
	8.1 8.2 8.3 8.4	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT . LIST OF SCENARIOS INDUSTRIAL EXPOSURE PROFESSIONAL EXPOSURE	.294 .296 .296 .298
	8.1 8.2 8.3 8.4 <i>8</i> .	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray	.294 .296 .296 .298 .298
-	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i>	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place.	.294 .296 .296 .298 .298 .301
-	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i> <i>8.</i>	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area	.294 .296 .296 .298 .298 .301 .307
-	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i>	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation.	.294 .296 .298 .298 .301 .307 .308
-	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i>	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation. 4.5 Summary tables: systemic and local exposure from professional uses	.294 .296 .298 .298 .301 .307 .308 .309
	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i> <i>8.</i>	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation. 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios.	.294 .296 .298 .298 .301 .307 .308 .309 .311
	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i> <i>8.</i> 8. 8.5	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation. 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios.	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311
	8.1 8.2 8.3 8.4 <i>8.</i> <i>8.</i> <i>8.</i> 8.5 8.5	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray 4.2 Scenario 2: cleaning-in-place 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios NON-PROFESSIONAL EXPOSURE Secondary EXPOSURE	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311
	8.1 8.2 8.3 8.4 8. 8. 8. 8. 8.5 8.6 8.7	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray 4.2 Scenario 2: cleaning-in-place 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios NON-PROFESSIONAL EXPOSURE Secondary EXPOSURE DIETARY EXPOSURE	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311
	8.1 8.2 8.3 8.4 8. 8. 8. 8. 8.5 8.6 8.7 8.7 8.	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray 4.2 Scenario 2: cleaning-in-place 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios NON-PROFESSIONAL EXPOSURE Secondary EXPOSURE DIETARY EXPOSURE Secondary EXPOSURE 7.1 Information of non-biocidal use of the active substance	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311 .311
	8.1 8.2 8.3 8.4 8. 8. 8. 8. 8.5 8.6 8.7 8. 8. 8.7 8. 8. 8.7	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray 4.2 Scenario 2: cleaning-in-place 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios NON-PROFESSIONAL EXPOSURE Secondary EXPOSURE DIETARY EXPOSURE Secondary EXPOSURE 7.1 Information of non-biocidal use of the active substance 7.2 Estimating Livestock Exposure to Active Substances used in Biocidal Products	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311 .311
	8.1 8.2 8.3 8.4 8. 8. 8. 8.5 8.5 8.6 8.7 8. 8. 8.7 8. 8. 8.7 8. 8. 8.7	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray 4.2 Scenario 2: cleaning-in-place 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios NON-PROFESSIONAL EXPOSURE Secondary EXPOSURE DIETARY EXPOSURE Secondary EXPOSURE 7.1 Information of non-biocidal use of the active substance	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311 .312 .312
	8.1 8.2 8.3 8.4 8. 8. 8. 8. 8. 8.5 8.6 8.7 8. 8. 8.7 8. 8. 10 10 10 10 10 10 10 10 10 10 10 10 10	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311 .312 .312 .313
	8.1 8.2 8.3 8.4 8. 8. 8. 8. 8. 8.5 8.6 8.7 8. 8. 8.7 8. 8. 10 10 10 10 10 10 10 10 10 10 10 10 10	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation. 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios. NON-PROFESSIONAL EXPOSURE Secondary exposure 7.1 Information of non-biocidal use of the active substance. 7.1 Information of non-biocidal use of the active substances. 7.2 Estimating Livestock Exposure to Active Substances used in Biocidal Products 7.3 Estimating transfer of biocidal active substances into foods as a result of professional and/or dustrial application(s).	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311 .312 .312 .313 .313
	8.1 8.2 8.3 8.4 8. 8. 8. 8.5 8.6 8.7 8. 8.7 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation. 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios. NON-PROFESSIONAL EXPOSURE SeconDARY EXPOSURE SECONDARY EXPOSURE SeconDARY EXPOSURE 7.1 Information of non-biocidal use of the active substance. 7.2 Estimating Livestock Exposure to Active Substances used in Biocidal Products 7.3 Estimating transfer of biocidal active substances into foods as a result of professional and/or dustrial application(s)	.294 .296 .298 .298 .301 .307 .308 .311 .311 .311 .311 .312 .312 .313 .313
	8.1 8.2 8.3 8.4 8. 8. 8. 8.5 8.6 8.7 8. 8.7 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS. INDUSTRIAL EXPOSURE. PROFESSIONAL EXPOSURE. 4.1 Scenario 1: Small surface disinfection by RTU trigger spray. 4.2 Scenario 2: cleaning-in-place. 4.3 Scenario 3: re-entry of treated area 4.4 Scenario 4: CIP professional bystander, inhalation. 4.5 Summary tables: systemic and local exposure from professional uses 4.6 Combined scenarios. NON-PROFESSIONAL EXPOSURE Secondary EXPOSURE DIETARY EXPOSURE OF THE GENERAL PUBLIC EXCLUDING DIETARY EXPOSURE. DIETARY EXPOSURE 7.1 Information of non-biocidal use of the active substance. 7.2 Estimating Livestock Exposure to Active Substances used in Biocidal Products 7.3 Estimating transfer of biocidal active substances into foods as a result of professional and/or dustrial application(s). 7.4 Estimating transfer of biocidal active substances into foods as a result of non-professional use. EXPOSURE ASSESSMENT SURONMENTAL EXPOSURE ASSESSMENT	.294 .296 .298 .298 .301 .307 .308 .311 .311 .311 .311 .312 .312 .313 .313
	8.1 8.2 8.3 8.4 8. 8. 8. 8.5 8.6 8.7 8.6 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .312 .312 .313 .313 .313
	8.1 8.2 8.3 8.4 8. 8. 8. 8.5 8.6 8.7 8.6 8.7 8.8 8.7 8.8 8.8 E 9.1 9.1 9.1	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .311 .312 .312 .313 .313
9	8.1 8.2 8.3 8.4 8. 8. 8. 8.5 8.6 8.7 8.6 8.7 8.8 8.7 8.8 8.8 E 9.1 9.1 9.1	IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT. LIST OF SCENARIOS	.294 .296 .298 .298 .301 .307 .308 .309 .311 .311 .311 .312 .312 .313 .313 .313

9.4	PRIMARY AND SECONDARY POISONING	-
9.4	- · · · · · · · · · · · · · · · · · · ·	
9.4	1.2 Secondary poisoning	
10 A	ASSESSMENT OF EFFECTS ON HUMAN HEALTH FOR THE PRODUCT	
10.1	Product(s)	
10.2	DERMAL ABSORPTION	
10.3	Асите тохісіту	324
10.	3.1 Overall conclusion on acute toxicity	
10.4		
	4.1 Skin corrosion and irritation	
10.4		
-	4.3 Respiratory tract irritation	
-	4.4 Overall conclusion on corrosion and irritation	
10.5 <i>10</i>	SENSITISATION	
-	5.2 Respiratory sensitisation	
-	5.3 Overall conclusion on sensitisation	
10.6		
11 E	ENVIRONMENTAL EFFECTS ASSESSMENT FOR THE PRODUCT	
11.1 11.2	ATMOSPHERE	
11.2	AQUATIC COMPARTMENT	
11.3 11.4	TERRESTRIAL COMPARTMENT	
11.5	PRIMARY AND SECONDARY POISONING	
	: RISK CHARACTERISATION OF THE BIOCIDAL PRODUCT(S)	
12 F	RISK CHARACTERISATION FOR HUMAN HEALTH	331
12 F	CRITICAL ENDPOINTS	
12.1 <i>12</i>	CRITICAL ENDPOINTS	
12.1 <i>12.</i> <i>12.</i>	CRITICAL ENDPOINTS 1.1 Systemic effects 1.2 Local effects	
12.1 12 12 12	CRITICAL ENDPOINTS 1.1 Systemic effects 1.2 Local effects 1.3 Absorption	
12.1 12 12 12 12.2	CRITICAL ENDPOINTS 1.1 Systemic effects 1.2 Local effects 1.3 Absorption REFERENCE VALUES	
12.1 12 12 12 12.2 12.2	CRITICAL ENDPOINTS 1.1 Systemic effects 1.2 Local effects 1.3 Absorption REFERENCE VALUES 2.1 Uncertainties and assessment factors	
12.1 12 12 12.2 12.2 12 12	CRITICAL ENDPOINTS 1.1 Systemic effects 1.2 Local effects 1.3 Absorption REFERENCE VALUES 2.1 Uncertainties and assessment factors 2.2 AEL setting	
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS 1.1 Systemic effects 1.2 Local effects 1.3 Absorption REFERENCE VALUES 2.1 Uncertainties and assessment factors 2.2 AEL setting 2.3 Reference values to be used in Risk Characterisation	
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 336 338 338 344 344
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 336 338 338 344 345 345
12.1 12 12 12.2 12 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 336 338 338 344 345 345 345
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 346
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 346 346
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 12 12.2 12 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 12 12.2 12 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 12 12.2 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 12 12 12.2 12 12 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12	CRITICAL ENDPOINTS	331 331 335 336 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 13	CRITICAL ENDPOINTS. 1.1 Systemic effects	331 331 335 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 13 13 13	CRITICAL ENDPOINTS	331 331 335 336 336 338 338 344 345 345 345 345 345 345 345 345 346 346 346 346 346 358 358 358 358 358 358 358 358 358 358
12.1 12 13	CRITICAL ENDPOINTS	331 331 335 336 336 338 338 344 345 345 345 345 345 345 345 345 345
12.1 12 13	CRITICAL ENDPOINTS	331 331 335 336 336 338 338 344 345 345 345 345 345 345 345 345 345

13.6.1 Primary poisoning	
13.6.2 Secondary poisoning	
13.7 Aggregated exposure (combined for relevant emmission sources)	
13.7.1 STP route	
13.7.1.1 Emission estimation	
13.7.1.2 Fate and distribution in exposed environmental compartments	
13.7.1.3 Calculated aggregated ∑PEC values	
13.7.1.3.1 STP route: refinement of the exposure calculation	
13.7.1.4 Aggregated risk characterisation	
13.7.2 Manure route	
13.8 SUMMARY OF THE RISK ASSESSMENT FOR THE ENVIRONMENT	
14 RISK CHARACTERISATION FOR THE PHYSICO-CHEMICAL PROPERTIES	
15 MEASURES TO PROTECT MAN, ANIMALS AND THE ENVIRONMENT	
15 MEASURES TO PROTECT MAN, ANIMALS AND THE ENVIRONMENT	
15 MEASURES TO PROTECT MAN, ANIMALS AND THE ENVIRONMENT	
PART D : APPENDICES APPENDIX I: LIST OF ENDPOINTS	
PART D : APPENDICES	
PART D : APPENDICES APPENDIX I: LIST OF ENDPOINTS	
PART D : APPENDICES APPENDIX I: LIST OF ENDPOINTS APPENDIX II: HUMAN EXPOSURE CALCULATIONS APPENDIX III: ENVIRONMENTAL EMISSION (AND EXPOSURE) CALCULATIONS	
PART D : APPENDICES APPENDIX I: LIST OF ENDPOINTS APPENDIX II: HUMAN EXPOSURE CALCULATIONS APPENDIX III: ENVIRONMENTAL EMISSION (AND EXPOSURE) CALCULATIONS APPENDIX IV: LIST OF TERMS AND ABBREVIATIONS	
PART D : APPENDICES APPENDIX I: LIST OF ENDPOINTS APPENDIX II: HUMAN EXPOSURE CALCULATIONS APPENDIX III: ENVIRONMENTAL EMISSION (AND EXPOSURE) CALCULATIONS	
PART D : APPENDICES APPENDIX I: LIST OF ENDPOINTS APPENDIX II: HUMAN EXPOSURE CALCULATIONS APPENDIX III: ENVIRONMENTAL EMISSION (AND EXPOSURE) CALCULATIONS APPENDIX IV: LIST OF TERMS AND ABBREVIATIONS	370 370 385 388 388 389 390

1 STATEMENT OF SUBJECT MATTER AND PURPOSE

This assessment report has been established as a result of the evaluation of the active substance **FORMIC ACID** in PT 4 "*food & feed*", carried out in the context of the working programme for the review of existing active substances provided for in Article 89 of Regulation (EU) No 528/2012, with a view to the possible approval of this substance.

In accordance with the provisions of Article 7(1) of Commission Regulation (EC) No 1451/2007, Belgium was designated as Evaluator Member State to carry out the assessment on the basis of the submitted dossier.

FORMIC ACID (CAS N° 64-18-6) was notified as an existing active substance by BASF SE and KEMIRA OYJ. This notification was intended to encompass both FORMIC ACID/FA and PERFORMIC ACID/PFA *in situ*-generated (from formic acid and hydrogen peroxide) in which FA was considered the active substance and PFA the representative product.

- In the period 2007 to 2009, the BE eCA received the dossier and numerous updates from the two applicants (BASF SE and Kemira Oyj).

- In March 2015, it was decided according to the CA-March15-Doc.5.1 that the original review programme entry (37) for Formic Acid was to be split in two separate entries for Formic Acid and Performic Acid (generated from formic acid and hydrogen peroxide).

Subsequently, a resubmission of the dossier was necessary, since the original dossier consisted of a tightly interwoven dossier between the now two distinct substances.

In September 2015, a new dossier for Formic Acid was submitted by both applicants, who had now started working together in a Formic Acid Task Force (BASF SE, Kemira Oyj), following numerous updates in the periods 2015 to 2021.

On November 21st 2016 the BE eCA submitted a CLH dossier to ECHA. ECHA provided their accordance check on the CLH report on February 9th 2017, concluding that revisions and clarifications were required.

Before submitting the CAR to ECHA, the applicants were given the opportunity to provide written comments in line with Article 8(1) of Regulation (EU) No 528/2012.

On September 15st 2021, the BE eCA submitted to ECHA a copy of the assessment report containing the conclusions of the assessment, hereafter referred to as the competent authority report (CAR).

By the time of submitting this new CAR, according to the biocides Review Program Regulation/Biocides working procedure, a revised CLH report (addressing hazard classes that should be included to the already existing C&L) is duly submitted.

After ECHA Accordance Check, a peer-review by technical experts from all Member States of the draft CAR is organised by ECHA. The CAR is presented at the Biocidal Products Committee (and its Working Groups meetings) and thereafter amended according to the revisions agreed upon the comments received.

The aim of the assessment report is to support the opinion of the Biocidal Products Committee and a decision on the approval of **Formic Acid** for PT 4 and, should it be approved, to facilitate

the authorisation of individual biocidal products. In the evaluation of applications for product authorisation, the provisions of Regulation (EU) No 528/2012 shall be applied, in particular the provisions of Chapter IV, as well as the common principles laid down in Annex VI.

For the implementation of the common principles of Annex VI, the content and conclusions of the assessment report, which is available from the web-site of ECHA shall be taken into account.

However, where conclusions of this assessment report are based on data protected under the provisions of Regulation (EU) No 528/2012, such conclusions may not be used to the benefit of another applicant, unless access to these data for that purpose has been granted to that applicant.

2 ASSESSMENT REPORT

SUMMARY

1 PRESENTATION OF THE ACTIVE SUBSTANCE

1.1 IDENTITY OF THE ACTIVE SUBSTANCE

Main constituent(s)	
ISO name	Formic Acid
IUPAC or EC name	Methanoic Acid
EC number	200-579-1
CAS number	64-18-6
Index number in Annex VI of CLP	607-001-00-0
Minimum purity / content	Min. 99% w/w (BASF)
Structural formula	

Relevant impurities and additives		
IUPAC name or chemical name or EC name Maximum concentration in % (w/w)		Index number in Annex VI of CLP
n.a. n.a.		n.a.

1.2 INTENDED USES AND EFFECTIVENESS

Use of the active substance	
Product type	PT2 "Disinfectants and algaecides not intended for direct application to humans or animals"
	PT3 "Veterinary hygiene"
	PT4 "Food and feed area"
	PT5 "Drinking water"
	PT6 "Preservatives for products during storage"
Intended use pattern(s)	 Formic Acid-based Biocidal products are intended to be used for : Disinfection of industrial and institutional premises and machinery, bathroom surfaces, toilets and sanitary ware in the domestic and institutional environment,
	 Disinfection of waters (including bathing and waste waters) Disinfection of areas in which animals are housed, kept and transported.

	 Disinfection of working areas and production surfaces including food preparation and consumption areas. Disinfection of drinking water for both humans and animals. Preservation of industrial, consumer, household and institutional products.
Users	Industrial, professional and general public - depending on the product.

Effectiveness of the active su	Ibstance	
Function	Disinfectant Preservative d To kill microorganisms in general : bacteria, yeasts and fungi	
Organisms to be controlled		
Limitation of efficacy including resistance	 Avoid formulating with, or combining with, ingredients with a strongly alkali pH value : The antimicrobial effectiveness of Formic Acid-based Biocidal products is reduced with increasing system pH and users should take this into account, particularly at pH above 4.5. 	
	 Resistance against the mode of action is unlikely to occur, i.e. there is no adaptation to cope with acidic pH values or denaturated proteins, nor is there a mechanism known to exist that a sub-lethal energy supply, due to an incomplete cytochrome C oxidase inhibition, would lead to undesired side- effects or resistance against this inhibitor. 	
	 To prevent potential development of resistance or tolerance the use of sub-lethal dosing levels should be avoided. 	
	No incidence of resistance to formic acid has been recorded until now.	
Mode of action	Two different modes of action are reasonably considered to contribute to the biocidal activity, i.e. acidulant action and corrosion which causes enzyme denaturation and inhibition, cellular structure disruption, and impairment of cellular metabolic pathways. This mode of action is considered to depend on the low pH-value. Secondly, formic acid does inhibit cytochrome C oxidase and thus impairs cellular energy supply. Organisms and tissues with a high energy demand are specifically susceptible.	

1.3 CLASSIFICATION AND LABELLING

1.3.1 Classification and labelling for the active substance

Hazard class/ property	Proposed classification
Physical hazards	
Explosives	The active substance is not an explosive
Flammable gases	Not applicable as the active substance is a liquid
Flammable aerosols	Not applicable as the active substance is a liquid
Oxidising gases	Not applicable as the active substance is a liquid
Gases under pressure	Not applicable as the active substance is a liquid
Flammable liquids	Classified as Flam liquid 3 due to the flash point being under 60°C (49°C)
Flammable solids	Not applicable as the active substance is a liquid
Self-reactive substances	The substance is not self-reactive.
Pyrophoric liquids	Not pyrophoric liquid based on auto-ignition temperature and experience in manufacture and handling.
Pyrophoric solids	Not applicable as the active substance is a liquid
Self-heating substances and mixtures	Not applicable
Substances which in contact with water emit flammable gases	Not applicable since formic acid can be diluted in water
	Not applicable.
Oxidising liquids	Formic acid contains oxygen but is chemically bonded only to carbon and hydrogen.
Oxidising solids	Not applicable as the active substance is a liquid
Organic peroxides	Not applicable as formic acid is not an organic peroxides as it does not contain the bivalent -O-O structure.
Corrosive to metals	Corrosive to steel.

	Not corrosive to aluminium.
Human health hazards	
Acute toxicity via oral route	Acute Tox. 4, H302 Harmful if swallowed
Acute toxicity via dermal route	Data lacking
Acute toxicity via inhalation route	Acute Tox. 3, H331 Toxic if inhaled EUH071
Skin corrosion/irritation	Skin Corr. 1A, H314
Serious eye damage/eye irritation	Eye Dam. 1, H318 Causes serious eye damage
Respiratory sensitisation	Conclusive but not sufficient for classification
Skin sensitisation	Conclusive but not sufficient for classification
Germ cell mutagenicity	Conclusive but not sufficient for classification
Carcinogenicity	Conclusive but not sufficient for classification
Reproductive toxicity	Conclusive but not sufficient for classification
Specific target organ toxicity-single exposure	Conclusive but not sufficient for classification
Specific target organ toxicity-repeated exposure	Conclusive but not sufficient for classification
Aspiration hazard	Conclusive but not sufficient for classification
Environmental hazards	
Hazardous to the aquatic environment	Conclusive but not sufficient for classification
Hazardous to the ozone layer	Hazard class not assessed

1.3.1.1 **CURRENT CLASSIFICATION AND LABELLING**

Current Classification and Labelling according to Regulation (EC) No 1272/2008			
Classification	Labelling		

BPC-43-2022-07B

Hazard Class and Category	Hazard statements	Pictograms	Signal word	Hazard statements	Suppl. Hazard statements	Precautionary statements	SCLs and M-factors
Skin Corr. 1A	H314	GHS05	danger	H314	-	(-)	Skin Corr. 1B; H314: $10\% ≤ C < 90\%$ Skin Corr. 1A; H314: $C ≥ 90\%$ Skin Irrit. 2; H315: $2\% ≤ C < 10\%$ Eye Irrit. 2; H319: $2\% ≤ C < 10\%$

1.3.1.2 **Proposed classification and labelling**

Proposed Classification and Labelling according to Regulation (EC) No 1272/2008							
Classification Labelling							
Hazard Class and Category	Hazard statements	Pictograms	Signal word	Hazard statements	Suppl. Hazard statements	Precautionary statements	SCLs and M-factors
Corrosive to metal	H290 - May be corrosive to metals	GHS05	warning	May be corrosive to metals	-	P234 P390 P406	-
Flammable liquid – category 3	H226 - Flammable liquid and vapour	GHS02	Warning	Flammable liquid and vapour		P210 P233 P240 P242 P243 P280 P303+P361+P353 P403+P235	

BPC-43-2022-07B

						P501	
Acute tox. 4 (oral)	H302	GHS07	warning	H302	-	Prevention P264, P270 Disposal P501	
Acute tox. 3 (Inhalation – vapour)	H331	GHS06	danger	H331	EUH071	Prevention P261, P271 Response P304+P340, P311 Storage P403+P233, P405 Disposal P501	
Skin Corr. 1A	H314	GHS05	danger	H314	-	Prevention P280, P260, P264 Response P310, P305+P351+P338, P304+P340, P303+P361+P353, P301+P330+P331, Storage P405 Disposal P501	$\frac{\text{Skin Corr. 1B; H314:}}{10\% ≤ C < 90\%}$ <u>Skin Corr. 1A; H314:</u> C ≥ 90% <u>Skin Irrit. 2; H315:</u> 2% ≤ C < 10%
Eye dam./Irrit. 1	H318	-	-	-	-	Prevention H280 Response P310, P305+P351+P338	Eye dam./Irrit. 1; H318: C ≥ 10% Eye Irrit. 2; H319: 2% ≤ C < 10%

1.3.2 Classification and labelling for the representative product(s)

1.3.2.1 **PROPOSED CLASSIFICATION AND LABELLING**

Proposed Classification and Labelling according to Regulation (EC) No 1272/2008

Protectol® FM	Protectol® FM 85						
Classification		Labelling					
Hazard Class and Category	Hazard statements	Pictograms	Signal word	Hazard statements	Suppl. Hazard statements	Precautionary statements	SCLs and M-factors
Corrosive to metal	H290 - May be corrosive to metals	GHS05	warning	May be corrosive to metals	-	P234 P390 P406	-
Acute tox. 4 (oral)	H302	GHS07	warning	H302	-	Prevention P264, P270 Disposal P501	
Acute tox. 3 (Inhalation – vapour)	H331	GHS06	danger	H331	EUH071	Prevention P261, P271 Response P304+P340, P311 Storage P405 P403+P233 Disposal P501	
Skin Corr. 1B	H314	GHS05	danger	H314	-	Prevention P280, P260, P264 Response P310, P305+P351+P338, P304+P340, P303+P361+P353, P301+P330+P331, Storage P405 Disposal P501	Skin Corr. 1B; H314 if 10% ≤ C < 90%
Eye dam./Irrit. 1	H318	-	-	-	-	Prevention P280 Response P310, P305+P351+P338	Eye dam./Irrit. 1; H318: C ≥ 10%

1.3.2.2 **PACKAGING OF THE BIOCIDAL PRODUCT**

Protectol® FM 85						
Type of packaging	Size/volume of the packaging	Material of the packaging	Type and material of closure(s)	Intended user (e.g. professional, non- professional)	Compatibility of the product with the proposed packaging materials (Yes/No)	
IBC; Drum, Sample bottles	1050 L(IBC), 220 L (Drums) 1L (bottles)	PE (outer container corrosion resistant steel) or brown glass (bottles)	PE	professional	yes	

2 SUMMARY OF THE HUMAN HEALTH RISK ASSESSMENT

2.1 SUMMARY OF THE ASSESMENT OF EFFECTS ON HUMAN HEALTH

Introductory note:

The repeated dose toxicity via the oral route of formic acid is assessed with its non-corrosive salts, sodium formate and potassium diformate, in order to achieve sufficiently high dose levels. Neurotoxicity is assessed with methanol. This read across approach is in accordance with Article 6(3) of the EU No. 528/2012 (BPR) following point 1.5(2) under Annex IV: "*common precursors and/or the likelihood of common breakdown products via physical and biological processes, which result in structurally similar chemicals and indicates the presence of dangerous properties*". The full read-across justification, which was performed following the Read-Across Assessment Framework developed by ECHA, can be found in Appendix VII.

Endpoint	Brief description			
Toxicokinetics	Absorption: rapid, but no quantitative data available Distribution: seemingly a significant proportion of formate distributes in the tissue, but more likely undergoes rapid metabolism and excretion Metabolism: rapid: hepatic first pass effect; oxidation to CO ₂ ; no indication of accumulation Excretion: Rapid elimination via exhalation of CO ₂ ; low urinary excretion of			
Acute toxicity	formic acidpredominantly determined by formic acid's inherent irritating/corrosive properties. The toxicity values after oral uptake and inhalation in rats suggest formic acid to be acutely harmful. The clinical signs give no evidence of specific systemic adverse effects.Proposed classification: Acute tox 4 (oral) H302LD ₅₀ 730 mg/kg bw1			
Corrosion and irritation	Acute tox 3 (inhal) H331LC50 7.4 mg/lFormic acid is corrosive to skin and eye. Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive in the EU (12 th ATP). Respiratory irritation: we propose to classify formic acid as EUH071, 'corrosive to the respiratory tract', as its corrosive properties 			
Sensitisation	Formic acid is not a skin sensitizer. There is no indication that formic acid would be a respiratory sensitizer.			
Repeated dose toxicity	The short-term toxicity of formic acid has not been investigated. The medium-term oral toxicity was studied in the rat and the pig. Oral administration of potassium diformate led to largely reversible local irritation effects in the stomach and histological changes of the stomach and gastrointestinal tract. High doses may produce adverse effects, such as decrease in body weight gain, possibly due to the inherent irritating potential.			

¹ Final LD₅₀ will be set by RAC; it is the LD₅₀ value from the adopted RAC opinion that will need to be used in biocidal product authorisation.

	DPC-43-2022-07B
	Rat: NOAEL _{local} < 420 mg formate/kg bw/d
	NOAEL _{syst} 840 mg/kg bw/d
	Pig: < 149 mg formate/kg bw/d
	Medium-term inhalation toxicity was studied in rats and mice exposed to formic acid vapours for 13 weeks. Histological changes were observed in the upper respiratory tract. In addition, a decrease in body weight gain was observed at the highest dose level in mice. Medium-term inhalation toxicity:
	·
	overall NOAEC _{local} = 60 mg formic acid/m ³ NOAEC _{systemic} = 244 mg formic acid/m ³
	The long-term oral toxicity was studied in the rat and the pig. Oral administration of potassium diformate led to local irritation effects in the stomach, which were confirmed histopathologically. In the high dose animals, body weight (gain) was decreased and there was a lower incidence of pelvic mineralization in the kidney.
	NOAEL _{systemic} = 280 mg formate/kg bw/d
Genotoxicity	Available data indicate that formic acid has no genotoxic potential.
Carcinogenicity	No data are available on formic acid. A carcinogenicity study on potassium diformate indicates that potassium diformate has no carcinogenic potential.
Reproductive toxicity	No data are available on formic acid.
	No developmental toxicity and teratogenicity was observed for formate in rats and rabbits.
	No adverse effects on fertility were observed for formate in rats.
	No adverse effects on or via lactation are expected for formic acid.
	Two-generation study, rat:
	NOAEL _{parental} = 200 mg formate/kg bw/d
	NOAEL _{offspring} = 670 mg formate/kg bw/d
	NOAELreproduction parameters = 670 mg formate/kg bw/d
	Teratogenicity studies, rat, rabbit:
	NOAEL _{maternal} = 640 mg formate/kg bw/d
	NOAEL _{developmental} = 640 mg formate/kg bw/d
Neurotoxicity	At moderate doses, no neurotoxic effects are expected for formic acid.
	When the metabolic capacity to dispose of formate is exceeded, formate accumulation and adverse effects on the optical nerve and photoreceptors can occur. However, these symptoms are considered to be an exclusive sequel of acute methanol intoxication in primates.
Immunotoxicity	There are no indications that Formic Acid has the potential to induce adverse effects involving the immune system.
Disruption of the endocrine system	ED criteria are not met for Human Health
Other effects	Workplace measurements, health records from industry and case reports show that local corrosive effects prevail but systemic effects may result after contact of concentrated formic acid to extended areas of the body surface. Occupational and accidental dermal exposure records report skin

corrosion and metabolic acidosis. After oral exposure observations range from moderate burns around the mouth to severe corrosion of the gastro- intestinal tract with destruction of the esophagus, perforation of the stomach, and corrosion of the small intestine together with massive bleeding and systemic toxicity, potentially leading to the death of the patient. For inhalation exposure at the threshold limit of 5 ppm or 9.5 mg/m ³ an effect on the blood pH is unlikely.

2.2 REFERENCE VALUES

	Study	NOAEL/ LOAEL	Overall assessment factor	Value
AELshort-term	90-day feeding study, potassium diformate, rat	840 mg formate/kg bw/d (2100 mg formate/kg bw/d)	100	8.4 mg formate/kg bw/d
AEL _{medium} -term	90-day feeding study, potassium diformate, rat	840 mg formate/kg bw/d (2100 mg formate/kg bw/d)	100	8.4 mg formate/kg bw/d
AEL _{long-term}	2-year feeding study, potassium diformate, rat	280 mg formate/ kg bw/d (1400 mg formate/kg bw/d)	100	2.8 mg formate/kg bw/d Rounded to 3 mg formate/kg bw/d ²
ARfD	not required	/	/	/
ADI	EU SANCO D3/AS D, 2005; JECFA, 2003	/	/	3 mg/kg bw/d
Occupational exposure limit	EU WEL, MAK/TLV (8-hour TWA) IOELV Commission Directive 2006/15/EC	/	/	5 ppm or 9.5 mg/m ³ 5 ppm or 9 mg/m ³
AEC _{resp} tract irrit	inhalation, 13 weeks, formic acid, rat/mice	60 mg/m ³	10	6 mg/m ³

² We refer to TAB entry TOX-4 as the impact of rounding is less than 10%. Please note that for this CAR, the risk characterization has been performed with the non-rounded 2.8 mg formate/kg bw/d value. The decision for rounding the AEL long-term was taken at HH WG I-2022; however it was decided that there was no need to alter the risk characterization of the CAR. For product approval, the rounded 3 mg formate/kg bw/d value should be used.

2.3 RISK CHARACTERISATION

Summary	Summary table: scenarios				
Scenario number	Scenario (e.g. mixing/ loading)	Primary or secondary exposure Description of scenario	Exposed group (e.g. professionals, non-professionals, bystanders)		
1.	Small surface disinfection by RTU trigger spray	1.application of the RTU solution by trigger spray	professionals		
2.	CIP	2a.primary exposure during mixing and loading by professionals, dosing	Professionals		
		2b.application: cleaning-in-place process			
		2c. maintenance and repair, disposal of containers			
3.	Secondary exposure	Inhalation exposure after entry of treated area (small surface – trigger spray)	Bystanders (professionals)		
4.	Secondary exposure	inhalation exposure for CIP professional bystander	Bystanders (professionals)		

The risk assessment performed for formic acid, PT4, covers professional small surface disinfection by RTU trigger spray and professional Cleaning-In-Place. A deciding factor in identifying safe uses is the high vapour pressure of formic acid. Inhalation exposure to formic acid is relevant in all scenarios.

Exposure at mixing-and-loading steps was assessed at high formic acid concentrations (85%); in-use dilutions of 5% were considered. The assessment includes bystander exposure. Systemic exposure was determined for the dermal and inhalation route. A quantitative assessment was done for inhalation of vapour. Where relevant, a qualitative assessment was included for local dermal and inhalation exposure.

It was established that professional application of formic acid at 85% concentrations in CIP leads to acceptable exposure when sufficient ventilation is applied and appropriate PPE are considered. Additionally, RPE are required during mixing and loading and maintenance and repair when ventilation is insufficient. Professional bystanders are expected to use the same set of PPE as the professional user.

It was established that professional small surface disinfection by RTU trigger spray leads to acceptable exposure when sufficient ventilation is applied; additionally, the use of appropriate PPE is required. Relevant bystander exposure was also assessed as acceptable when sufficient ventilation is applied.

At product authorisation stage, secondary exposure of the general public (via the dermal, oral and inhalation route) as a result of professional use may have to be assessed according to the intended use; alternatively, the intended uses may have to be restricted by appropriate RMM.

Conclusion of risk characterisation for professional user				
Scenario, Tier	Relevant reference value ²	Estimated uptake (syst: mg/kg bw/d; local: mg/m ³)	Estimated uptake/reference value (%)	Acceptable (yes/no)
RTU trigger spray, 5% FA, T1 no PPE,	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	0.2	7.1%	yes
ventilation 15/h	Local inhalation vapour AEC 6 mg/m ³	1.2	20%	yes
CIP, semi- automated, M&L	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	3.92	140%	No
T1 no PPE, ventilation rate 15/h	Local inhalation vapour AEC 6 mg/m ³	2.6	43.3%	Yes
CIP, semi- automated, M&L	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	0.0482	1.7%	Yes
T2 impermeable coveralls, gloves, boots face protection; ventilation rate 15/h	Local inhalation vapour AEC 6 mg/m ³	2.6	43.3%	Yes
CIP, semi- automated, application	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	NR	NR	Yes
	Local inhalation vapour AEC 6 mg/m ³	NR	NR	Yes
CIP, semi- automated, Maintenance & repair,	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	3.92	140%	No
disposal T1 no PPE, ventilation rate 15/h	Local inhalation vapour AEC 6 mg/m ³	2.6	43.3%	yes
	Systemic effects	0.0482	1.7%	yes

CIP, semi- automated, Maintenance & repair, disposal	AEL _{long-term} 2.8 mg/kg bw/d Local inhalation vapour AEC 6 mg/m ³	2.6	43.3%	yes
T2 impermeable coveralls, gloves, boots face protection; ventilation rate 15/h				
CIP, semi- automated, M&L + maintenance/	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	7.84	280%	no
Repair combined T1 no PPE,	Local inhalation vapour AEC 6 mg/m ³	no addition of exposi performed; only hig in air considered rel	hest exposure level	yes
ventilation rate 15/h				
CIP, semi- automated, M&L + maintenance/	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	0.0962	3.4%	yes
Repair combined	Local inhalation vapour AEC 6 mg/m ³	no addition of exposure levels performed; only highest exposure level in air considered relevant		yes
T2 impermeable coveralls, gloves, boots face protection; ventilation rate 15/h				
re-entry of treated area, small surface disinfection –	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	0.20	7.1%	yes
RTU spray, 5% FA, T1 none, ventilation 15/h	Local inhalation vapour AEC 6 mg/m ³	1.2	20%	yes
bystander exposure to CIP	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	9.1*10 ⁻³	0.3%	Yes

T1 no PPE, ventilation rate 15/h	Local inhalation vapour AEC 6 mg/m ³	2.6	43.3%	yes
bystander exposure to CIP	Systemic effects AEL _{long-term} 2.8 mg/kg bw/d	9.1*10 ⁻³	0.3%	Yes
T2 impermeable coveralls, gloves, boots face protection; ventilation rate 15/h	Local inhalation vapour AEC 6 mg/m ³	2.6	43.3%	yes
Local exposure	2			
conc	task	classification	Hazard category	Potential exposure route
85%	Mixing & loading Maintenance & repair Professional bystander	Skin corr 1B EUH071	High	Skin, eye, RT
	Conclusion on risk: ACCEPTABLE +engineering controls +low frequency +short duration +professionals using PPE; RPE @insufficient ventilation +professionals following instructions for use +good standard of personal hygiene +professional bystander is expected to use the same set of PPE as the professional user			PE as the
5%	Maintenance and repair	Skin irrit 2 Eye irrit 2	low	Skin, eye, RT
	mixture +engineering contr +reversible effect	orr 1B cover potentia rols owing instructions for	l exposure to skin irri	t 2 eye irrit 2
5%	RTU spray	Skin irrit 2 Eye irrit 2	low	Skin, eye, RT
	Conclusion on risk:	ACCEPTABLE		

+engineering controls
+reversible effect
+short duration
+professionals following instructions for use + PPE
+experience expected

3 SUMMARY OF THE ENVIRONMENTAL RISK ASSESSMENT

3.1 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Summary table on compartments exposed and assessed			
Compartment	Exposed (Y/N)	Assessed (Y/N)	
Freshwater	Y	Υ	
Sediment	Ν	Ν	
Seawater	N	N	
Seawater sediment	N	N	
STP	Y	Υ	
Air	Ν	Ν	
Soil	Y	Υ	
Groundwater	Y	Y	
Biota	Ν	Ν	

Summary table on relevant physico-chemical and fate and behaviour parameter of the active substance

	Value	Unit	Remarks
Molecular weight	46.03	g/mol	
Melting point	8	°C	
Boiling point	100.23	°C	
Vapour pressure (at 12 °C)	2400	Ра	
Water solubility (at 12 °C)	1.09x10 ⁶	mg/l	
Log10 Octanol/water partition coefficient	-2.10		(pH 7)
Organic carbon/water partition coefficient (Koc)	30	l/kg	(pH 7)
Henry's Law Constant (at 12 °C)	0.101	Pa/m3/mol	
Acid dissociation constant	3.7		Predominant species at a pH of 7 is formate, which is reflected in the pH dependent Koc.
Biodegradability	Ready biodegradable		
DT50 for degradation in soil (12 °C)	1	day	

3.2 EFFECTS ASSESSMENT

Summary table on calculated PNEC values			
Compartment	PNEC		
Freshwater $\geq 2 \text{ mg/L}$			
STP	> 50 mg/L		
Soil	\geq 1.29 mg/kg _{wwt} (\geq 1.47 mg/kg _{dwt})		
Groundwater	Not applicable		

For groundwater, calculated PECs are compared to the reference value of 0.1 μ g/L.

3.3 EXPOSURE ASSESSMENT

Summary table on calculated PEC values				
	PEC _{STP} PEC _{water} PEC _{soil,twa} PEC _{GW} ¹			
	[mg/L]	[mg/L]	[mg/kg _{wwt}]	[µg/L]
Scenario 1				
on-site	N/A	6.12x10 ⁻²	N/A	N/A
off-site	4.40x10 ⁻²	4.39x10 ⁻³	3.10×10 ⁻⁴	7.04x10 ⁻²
Scenario 2				
RTU small scale applications (combined)	2.16x10 ⁻³	2.16x10 ⁻⁴	1.52x10 ⁻⁵	3.46x10 ⁻³
1 TIER 1: porewater concentration				

3.4 RISK CHARACTERIZATION

Summary table on calculated PEC/PNEC values				
	PEC/PNEC _{STP}	PEC/PNEC _{water}	PEC/PNEC _{soil}	
Scenario 1				
on-site	N/A	$\leq 3.06 \times 10^{-2}$	N/A	
off-site	< 8.79x10 ⁻⁴	$\leq 2.20 \times 10^{-3}$	$\leq 2.11 \times 10^{-4}$	
Scenario 2				
RTU small scale applications (combined)	< 4.32x10 ⁻⁵	≤ 4.32x10 ⁻⁵	$\leq 1.04 \times 10^{-5}$	

Groundwater concentrations for both scenarios were below the threshold of 0.1 μ g/L.

Conclusion:

The risks for the environment from the intended uses of the representative product for PT4 are acceptable for all scenarios.

4 ASSESSMENT OF EXCLUSION, SUBSTITUTION CRITERIA AND POP

Conclusion on exclusion criteria	The exclusion criteria in BPR Article 5(1)a-c are not met.
Conclusion on CMR	Formic acid is not classified and does not meet the criteria to be classified as CMR
Conclusion on ED assessment	Formic acid does not have endocrine disrupting activities.
Conclusion on PBT and vP/vB criteria	Formic acid is not a PBT/vPvB substance.

Conclusion on substitution criteria The substitution criteria in BPR Article 10 met.	0(1)a-f are not
---	-----------------

Conclusion on LRTAP/POP	Formic acid does not meet the criteria for being a POP
assessment	or LRTAP.

<u>PART A</u> : ASSESSMENT OF INTRINSIC PROPERTIES AND EFFECTS OF THE ACTIVE SUBSTANCE

1 GENERAL SUBSTANCE INFORMATION

1.1 IDENTIFICATION OF THE SUBSTANCE

Summary table on substance identity				
Common name (ISO name, synonyms)	Formic Acid			
Chemical name (EC name, CA name, IUPAC name	Methanoic Acid			
EC number	200-579-1			
CAS number	64-18-6			
other CAS numbers (e.g. deleted, related, preferred, alternate)	/			
Molecular formula	CH ₂ O ₂			
SMILES notation	C(=O)O			
Molar mass	46.025 g/mol			
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	Not relevant			
Description of the manufacturing process and identity of the source (for UVCB substances only)	Not relevant			
Degree of purity (%)	Min. 99% w/w (BASF)			

Structural formula

n °_H Η

Origin of the natural active substance or precursor(s) of the active substance Please refer to BASF PT4 Confidential Annex.

Method of manufacture

Please refer to BASF PT4 Confidential Annex.

1.2 COMPOSITION OF THE SUBSTANCE (REFERENCE SPECIFICATIONS)

Main constituent(s)				
Constituent (chemical name)	Typical concentration (%(w/w))	Concentration range (%(w/w))	Remarks / Discussion	
Formic Acid	Please refer to BASE	F PT4 Confidential Annex		

Impurities				
Constituent (chemical name)	Typical concentration (%(w/w))	Concentration range (%(w/w))	Remarks / Discussion	
Please refer to BASF PT4 Confidential Annex.				

Additives					
Constituent (chemical name)	Function	Typical concentration (%(w/w))	Concentration range (%(w/w))	Remarks / Discussion	
Please refer to BASF PT4 Confidential Annex.					

1.3 PHYSICAL AND CHEMICAL PROPERTIES OF THE ACTIVE SUBSTANCE

Property	Result	Test method applied or description in case of deviation	Remarks / Discussion / Justification for waiving	References
Aggregate state at 20°C and 101.3 kPa (99.4% (w/w))	The substance is a clear and colourless liquid which is homogeneous at 20 °C and 101.3 kPa.	Organoleptic	/	Study no. 07L00084, (2007)
Physical state (appearance) at 20°C and 101.3 kPa (99.4% (w/w))	Liquid	Organoleptic	/	Study no. 07L00084, (2007)
Colour at 20°C and 101.3 kPa (99.4% (w/w))	Colourless	Organoleptic	/	Study no. 07L00084, (2007)
Odour at 20°C and 101.3 kPa 1. 99-100% 2. 85%	Pungent	Organoleptic	/	 BASF AG (2007) BPD ID B3_04 (2007a)
Melting / freezing point (99.4% (w/w))	8 °C	OECD 102	No decomposition observed	(2018) 20181112_07L00084 Amendment01 Final Report BPD_ID_A3_01.pdf
Boiling point at (99.4% (w/w))	100.23 °C	OECD 103	Obtained by interpolation	Study no. 07L00084, (2007)
Relative density (99.4% (w/w))	$D_4^{20} = 1.2195$	OECD 109	/	Study no. 07L00084, (2007)

Acidity/alkalinity	pH _{85% formic acid} = -1.6 At 1%: pH = 2.2	German Industrial Standard DIN 19268	Potentiometric measurement	Study no. 07L00172,
	90.9530 ± 0.0663 % acidity	CIPAC MT 191	On 85% formic acid in water sample. Since test item is an acid, only acidity was tested.	Study no 16011907G975, (2016a)
	рН = 2.18	CIPAC MT 75	At 24.8 °C On 1% aqueous solution of 85% formic acid sample	Study no 16011907G907, (2016c)
	pH = 2.13	CIPAC MT 75.3	At 19.1 °C On 1% aqueous solution of 99% formic acid sample	Study no. S16-06389 (2017)
	108.03% (m/m) mean acidity	CIPAC MT 191	On 99% formic acid	Study no. S16-06390 (2017)
Vapour pressure (99.4% (w/w))	At 20 °C: 42.71 hPa At 25 °C: 54.96 hPa At 50 °C: 170.7 hPa	OECD 104	Extrapolated from regression-derived equation	Study no. 07L00084,
Henry's law constant	At 20 °C: 0.16 Pa.m ³ /mol		Calculation based on measured relative density as a surrogate for water solubility and measured vapour pressure	ECT Oekotoxikologie GmbH (2015)
Surface tension (99.4% (w/w))	At 20 °C: 71.5 mN/m (at 1g/L)	OECD 115	The test item is not surface active	Study no. 07L00084, (2007)

Water solubility at 20 °C	Completely miscible Corresponding to 1220 g/L (= D4 ²⁰)	SOP PCE/006/04 (BASF AG, GKA Analytik, chapter 4: visual method) Based on OECD 105 Deviation: Preparation of saturated solution was not possible and results are not expected to be different since missing part of the test solution for a pure solution is water.	Temperature dependence was not investigated due to complete miscibility.	Study no. 02L00109,
Partition coefficient (n- octanol/water) and its pH dependency Surface tension at 20 °C	At pH 5: Log K _{OW} = -1.9 At pH 7: Log K _{OW} = -2.1 At pH 9: Log K _{OW} = -2.3	EC method A.8	At 23 ± 1 °C The purity of the test solution (performed on a 85.3 w/w solution including water as "impurity") is seen as not relevant, and is not expected to influence the outcome	Study no. 02L00109, (2002)
Thermal stability and identity of breakdown products (99.4% (w/w))	Decomposition onset temperature: 350 °C Energy release: >150 J/g Auto-ignition temperature: 528 °C (corrected according to EN 14522)	OECD 113 EC method A.15	Combustion products are H ₂ O and CO ₂ At room temperature and during incomplete combustion CO and H ₂ may be formed	Study no. SIK-Nr.07/1018, (2007)
Reactivity towards container material (99.4% (w/w))	Compatible: - stainless steel, types 1.4306, 1.4307, 1.4311, 1.4404, 1.4541, 1.4571	Based on experience	Formic acid and solutions of formic acid are acidic. Therefore, materials which are not sufficiently resistant towards acids should not be	(2007a)

	 plastics: different types of PE like HD-PE; PP (for plugs and caps) Not compatible: carbon steel, paper, board 		used to avoid equipment damage and spoilage of products	
Dissociation constant (99.4% (w/w))	At 20 °C: pK _a = 3.70	OECD 112	/	Study no. 07L00084, (2007)
Granulometry	Waived	-	Not applicable, substance is not a powder or granule	-
Viscositiy (capillary viscometer) (99.4% (w/w))	Dynamic viscosity At 20 °C: 1.80 mPa.s At 40 °C: 1.22 mPa.s Kinematic viscosity At 20 °C: 1.47 mm ² /s At 40 °C: 1.02 mm ² /s	OECD 114	/	Study no. 07L00084,
Solubility in organic solvents, including effect of temperature on solubility (99.4% (w/w))	Miscible at ratios: 1:9, 1:1 and 9:1 Miscible at 20 and 30 °C Corresponding to: > 850 g/L N,N-dimethylformamide > 92.9 g/L 1,4-dioxane > 1190 g/L Dichloromethane	SOP PCE/006/04 (BASF AG, GKA Analytik, chapter 4: visual method) Based on OECD 105 Deviation: Preparation of saturated solution was not possible and results are not expected to be different since missing part of the test solution for a pure solution is water.	(Density 1.0329 g/cm ³ at 20°C)	Study no. 07L00084,

Stability in organic solvents Waive used in biocidal products and identity of relevant degradation products	ived		Organic solvents not used in the biocidal products	-
--	------	--	---	---

1.4 PHYSICAL HAZARDS AND RESPECTIVE CHARACTERISTICS

Property	Result	Test method applied or description in case of deviation	Remarks / Discussion / Justification for waiving	References
Explosives	The substance is not explosive	UN Manual of Tests and Criteria (2010)	The substance has no chemical groups indicating explosive properties	(2006)
Flammable gases	Waived	-	Not applicable	-
Flammable aerosols	Waived	-	Not applicable	-
Oxidising gases	Waived	-	Not applicable	-
Gases under pressure	Waived	-	Not applicable	-
Flammable liquids	Flash point = 49.5 °C Is a flammable liquid category 3, as its flash point is \geq 23 °C and \leq 60 °C (H226)	EC method A.9	Closed cup; corrected for atmospheric pressure and rounded to units of 0.5 °C	Study no. SIK-Nr.07/1018, (2007)
Flammable solids	Waived	-	Not applicable	-

Self-reactive substances and mixture	The substance is not self- reactive	UN Manual of Tests and Criteria (2010)	The substance has no chemical groups indicating explosive or self-reactive properties	-
Pyrophoric liquids	Waived	-	Not a pyrophoric liquid, based on auto-ignition temperature (528 °C) and experience in manufacture and handling	Study no. SIK-Nr.07/1018, (2007)
Pyrophoric solids	Waived	-	Not applicable	-
Self-heating substances and mixtures	Waived	-	Not applicable, substance has a melting point of 8 °C	-
Substances and mixtures which in contact with water emit flammable gases	Waived	-	The active substance is a weak acid that, in presence of water, will partially dissociate and provide ions (ion hydronium and formate). This dissociation do not liberate any flammable gas. This is a well known process.	-
Oxidising liquids	The substance is not an oxidising liquid	UN Manual of Tests and Criteria (2010)	The compound contains oxygen but this element is chemically bonded only to carbon and hydrogen The compound does not contain any halogen atoms	(2006)
Oxidising solids	Waived	-	Not applicable	-
Organic peroxide	Waived	-	Not applicable	-

Corrosive to metals	Corrosive to steel Not corrosive to aluminium	UN Test C.1 (37.4)	On 99% formic acid	Study no. 16092902G979 (2017) Study no 16011907G979 (2016b)
	Corrosive to steel Not corrosive to aluminium	UN Test C.1 (37.4)	On 85% formic acid in water sample	Study no 16011907G979 (2016b)
	Compatible materials: - stainless steel, types 1.4306, 1.4307, 1.4311, 1.4404, 1.4541, 1.4571 Not compatible: - carbon steel As a conclusion, a classification as Corrosive to metals (H290) is justified.	Based on experience	On 99% formic acid	(2007a)
Auto-ignition temperature (liquids and gases)	Auto-ignition temperature: 528 °C (corrected according to EN 14522)	EC method A.15	/	Study no. SIK-Nr.07/1018, (2007)
Relative self-ignition temperature for solids	Waived	-	Not applicable	-
Dust explosion hazard	Waived	-	Not applicable	-

1.5 HAZARD IDENTIFICATION FOR PHYSICO-CHEMICAL PROPERTIES

Formic acid is a flammable liquid category 3. Further it does not present any other hazard from a physico-chemical point of view with regard to the available information. It presents a high self-ignition temperature, and has no explosive or oxidising properties.

1.6 ANALYTICAL METHODS FOR DETECTION AND IDENTIFICATION

Analytical me	ethods							
-	Compartm	Linearity	Specificity	Recovery rate (%)			Limit of	Referen
(type of analyte e.g. active substance, metabolite etc.)	ent			Fortificatio n range / Number of measureme nts	Mean	RSD	quantificat ion (LOQ), Maximum Residue Limits or other limits	ce
<i>Titration with sodium hydroxide solution 1mol/L Formic Acid</i>	Pure 100%	5 concentr r>0.9999 0.2-1 g test item	No interfering substances	5 repl recovery excellent	-	-	No LoD	(2017)
	<i>Diluted with water 85%</i>	5 concentr r>0.9999 0.2-1 g test item	No interfering substances	5 repl recovery excellent	-	-	No LoD	Idem

Belgium

PT4

GCMS (column: DB FFAP, 30 m x 0.32 mm (inner diameter), film thickness 0.25 µm, batch: USN526534H , AGILENTInser t) Electron impact (EI) positive	-	-	GC-MS analysis of the test item was performed and showed the absence of any other acid or impurity that could interfere with the titration.	-	-	-	-	Idem
CIPAC Method MT 30.5, "Water, Karl Fischer method using pyridine-free reagents", Hydranal- Composite 1, titer 0.8 – 1.2 mg/mL	<i>Pure 100% Diluted with water 85%</i>	12 conc R=1.0000 0.118- 6.347% w/w water		12 replicates	103%	3.37%	LoQ = 0.122% w/w	Idem

Remark: The enzymatic	Soil	Linearity is given in the	Enzyme is highly	25	Fortification [mg/kg]	Concentration, mean [mg/kg soil]	Recovery [%]	LoQ was set at 10 mg/L for	(2007)				
method of		range 0.2	specific for	0	1.59	n.d.	n.d. soil extracts	(2007)					
determination		mg formic	formic	acid. Test					5	1.61	31		
of formic acid		acid /l				10	9.05	85					
in aqueous solutions is		sample solution to	may be disturbed		50	47.8	93						
acknowledge		200 mg	by:			-		Ĭ					
d to represent a specific,		<i>formic</i> <i>acid/l</i> <i>sample (cf.</i>	Low or high pH outside		Fortification [mg/kg]	Concentration, mean [mg/kg soil]	Rel SD [%]						
sensitive, and		full test	approx. 7-		0	1.59	70						
reliable		description	8		5	1.61	53						
method, and		in Section	Reducing	; -	10	9.05 3.8							
in Germany it is contained		A4.1_01).	agents Colour,		50	47.8	4.7						
in the official list of methods which are suited to examine foodstuffs. <i>Photometer (</i> <i>wavelength</i> <i>334, 340, or</i> <i>360 nm) to</i>			turbidity, or protein										
detect formation of NADH													

Belgium

PT4

Photometer (wavelength	<i>Water</i> <i>surface</i>	<i>Surface</i> <i>water:</i>	None (enzyme	(5 measuremen	Fortification level [mg/L]	Recovery [%] Drinking water	Recovery [%] Surface water	LoQ of 0.2 mg/L	(2007)
334, 340, or		given in the		ts at each of	0.2	103	116	21	
360 nm) to		range 0.2	formic	the four	0.5	91	n.d.		
detect formation of		to 5 mg/L. R ² =	acid)	fortification levels) and	2	103	81		
NADH		0.99998 for		blanks	5	101	78		
		the			·			-	
		<i>regression</i> <i>curve for all</i> <i>measureme</i>			Fortification level [mg/L]	Rel SD[%] Drinking water	Rel SD [%] Surface water		
		nts			0.2	17	7.7		
		Linearity			0.5	2.4	n.d.		
		confirmed			2	6.6	1.6		
		in the			5	3.7	1.7		
		range 0.2- 100 mg/L (Keller and Hartmann, 2013: cf. Section A4.1_03).							

Belgium

PT4

formation of NADH R ² = 0.9997 Drinking levels) for the regression curve for all measureme nts precipitatio n of magnesiu m Fortifica [m] Linearity confirmed in the 100 mg/L phosphate turbidity Confirmed mode	2 5 ation level ng/L] 0.2 0.5 2 5	91 103 101 Rel SD[%] Drinking water 17 2.4 6.6 3.7	n.d. 81 78 Rel SD [%] Surface water 7.7 n.d. 1.6 1.7		
---	--	--	--	--	--

Ion chromatograp hy <i>Material and conditions:</i> Ion chromatograp her DIONEX DX 120 with conductivity detector and autosampler.	Air	Formic acid, 1.2 to 47.8 mg/L	Methoxyac etic acid cannot be completely separated from formic acid	Measures were performed at three different concentratio n (6 replicates by concentratio n):	Formic acid [mg/m ³] 0.9 9.0 18.0	Recove ry [%] 95 95 94	Formic acid [mg/m ³] 0.9 9.0 18.0	Relative standard deviation [%] 9,7 6,4 3,8	Absolute limit of quantificatio n: 0.1 µg formic acid. This corresponds to a relative limit of quantificatio n of 0.12 mg/m ³ for an air sample volume of 140 L, an absorption volume of 10 mL, and an injection volume of 50 µL	(2007)
Photometer (wavelength 334, 340, or 360 nm) to detect formation of NADH	animal and human body fluids and tissues	<i>Linearity is</i> <i>given in the</i> <i>range 0.2</i> <i>mg formic</i> <i>acid/l</i> <i>sample</i> <i>solution to</i> <i>200 mg</i> <i>formic</i> <i>acid/l</i> <i>sample</i>	None (enzyme specific for formic acid)	n.a.	100% bec formic aci water solu the volatil low. The e reaction is complete the specif conditions	d is uble and lity is enzyme s under lied test	Coefficient of v 0.48 – 2.40 %	ariance:	<i>Detection limit 0.2 mg/I sample</i>	(2007)

BPC-43-2022-07B

Photometer (wavelength 334, 340, or	food and feedstuffs	given in the	None (enzyme specific for	16	Fortification level [mg/L]	Number of measurements	Mean concentration [mg/L]	Rel SD [%]	Detection limit 0.2 mg/l sample	(2007)
360 nm) to		-	formic		0	6	9.96	2.5	ing/i sampic	
detect		acid/l	acid)		10	4	18.77	11		
formation of		sample			50	5	62.88	0.9		
NADH		solution to 200 mg formic acid/l sample								

No data submitted for sediments:

Based on the physico-chemical properties as well as the environmental fate of formic acid, the compartment sediment is of no concern for this substance.

Formic acid

- is readily biodegradable,
- is completely miscible with water,
- has a low potential for adsorption (log Kow -1.9 to -2.3; log Koc < 1.25)
- will predominantly distribute into the compartment water (93.5%), while a negligible fraction will be associated with the sediment (5.9E-05%) according to the Mackay Level I model (BPD ID IIA4.1.1.3_01).

It can be concluded that formic acid will be rapidly removed from the environment due to biodegradability. As it is completely miscible with water and has a low adsorption potential formic acid will not distribute into the compartment sediment. This is supported by the Mackay level I model result, which shows that formic acid will predominantly distribute into the compartment water. Therefore, no analytical method for the detection of formic acid is provided.

2 EFFECTS AGAINST TARGET ORGANISMS

2.1 FUNCTION AND FIELD OF USE ENVISAGED

FUNCTION

Main Group 1 : DISINFECTANTS

- PT2 "Disinfectants and algaecides not intended for direct application to humans or animals"
- PT3 "Veterinary hygiene"
- PT4 "Food and feed area"
- PT5 "Drinking water"

Main Group 2 : PRESERVATIVES

• *PT6* "Preservatives for products during storage"

With Bactericidal, yeasticidal & fungicidal activity.

To control the spread of microorganisms which may be harmful to human health.

FIELD OF USE ENVISAGED

The Formic Acid-based Biocidal products are wide-spread and have the following aims :

- PT2 : Disinfection of industrial and institutional premises and machinery, for Cleaning-In-Place procedures, bathroom surfaces, toilets and sanitary ware in the domestic and institutional environment i.e. walls, toilets and other hard surfaces.
 Products are applied by non-professionals by pouring and wiping; professionals apply the diluted concentrate as cleaning-in-place. Products to be used by professionals are concentrated formulations and by general public RTU formulations.
- *PT3*: Disinfection of areas in which animals are housed, kept and transported. Products to be used for animal house disinfection (by fogging), for disinfection of footwear (by dipping) and for animal's feet and animal transport vehicles disinfection Products to be used by professionals (i.e. professional contractors or experienced farm workers)
- PT4 : Disinfection of working areas and production surfaces including food preparation and consumption areas.
 Products to be used for hard surface disinfection (by trigger spraying) and for Cleaning-In-Place procedures. Products to be used by professionals.
- *PT5* : Disinfection of drinking water for animals Products to be used by professionals
- *PT6* : Preservation of industrial, consumer, household and institutional products, washing and cleaning fluids and other detergents, and formulation of detergent end product.

2.2 INTENDED USES

Summary table of intend	ed use(s)
Product Type	PT4 Food and feed area
Product description	 Formic Acid-based Biocidal products are recommended for the disinfection of : Floors, walls and equipment (including conveyer lines) involved in the production, preparation and consumption of food Food contact surfaces including pipelines mixing and storage tanks associated with production. Equipment used in the preparation, storage and consumption of food, feed and drink by humans and animals. Areas where food is handled including the retail environment. Pipelines and vessels by totally enclosed Clean-in-place (CIP) systems where the disinfectant is re-circulated
Target organisms (including development stage)	Bacteria Fungi Yeasts
Description of use(s)	Formic Acid-based Biocidal products are applied directly to surface to be treated. They may be hand sprayed, poured or wiped on to the surface or pumped through pipes and vessels (CIP-disinfection in the F&B industry) and then allowed to take effect. Afterwards the surfaces are typically rinsed .
Mode of action	 The biocidal activity of Formic Acid, i.e. acidulant action and corrosion which causes enzyme denaturation and inhibition, cellular structure disruption, and impairment of cellular metabolic pathways. This mode of action is considered to depend on the low pH-value. Secondly, formic acid does inhibit cytochrome C oxidase and thus impairs cellular energy supply. Organisms and tissues with a high energy demand are specifically susceptible : Acidulant: acidification of cytoplasm; Inhibitor for decarboxylases and haemin enzymes such as catalase; Organic acids in general may disrupt the proton-motive force, as well as inhibit substrate transport, energy-yielding processes and macromolecular synthesis.

Summary table of intend	ed use(s)
-	Acidulant action is responsible for formic acid being most effective at
	lower pH values (below 3.5), but enzyme inhibition and other modes
	also provide some antimicrobial action at higher pH values. Enzyme
	inhibition is less significant in the control of fungi; therefore, higher
	concentrations of formic acid are needed to control fungi. The activity
	of formic acid against some viruses is presumably explained by the
	action of acid in denaturing polypeptide chains.
	Humans and animals
Objects to be protected	The aim of the treatments is to kill microorganisms in general
Concentration of active	Representative product used in efficacy tests :
substance in the in-use formulation/product	Protectol® FM 85 with 85% Formic Acid
	For disinfection of hard/non-porous surfaces via spraying or CIP
	(with/without circulation) procedures in Food/Feed areas, the product
	Protectol® FM 85 (based on 85% FORMIC ACID) is bactericidal (with
	the exception of spore-forming bacteria and mycobacteria) at ${f 5.88}$ %
	(\Leftrightarrow 5% FORMIC ACID) in 5 min in dirty conditions (0.3% BSA).
Application rate(s)	The product Protectol® FM 85 (based on 85% FORMIC ACID) is
	<u>fungicidal/yeasticidal</u> at 3.53 % (\Leftrightarrow 3% FORMIC ACID) in 15 min in dirty
	conditions (0.3% BSA).
	FOR INFORMATION ONLY : At +20°C, in suspension under CLEAN
	conditions, a formulated product is bactericidal and yeasticidal in 5 min
	at 0.91% (0.5% FORMIC ACID).
	The number and timings of applications varies from one application per
Frequency of	day on large surfaces with low throughput to one application every two
application	hours for smaller rooms with high throughput.
Season/period for use (where relevant)	Not relevant
Field of use (indoors/outdoors)	Indoor
Category(ies) of user(s)	Industrial, professional users - depending on the respective product.
	RTU spray
	Pre-clean, rinse and dry the surface to be disinfected. Spray the liquid
Instruction for use	onto the surface until the entire surface is wet (ca. 18 ml/m2) Leave
	the surface wet for the required contact time. Wipe the surface dry
	with a wipe or cloth.

Summary table of intended use(s)					
	CIP disinfection				
	For disinfection of the internal of tanks, pipes etc. by CIP disinfection in				
	the food and beverage industry. The concentrated product is preferably				
	dosed by a (semi-)automatic dosing system or dosing pump to yield				
	the required dilution with clean water. The product is circulated				
	through the system for the required contact time at room temperature.				
	After disinfection the internal system is drained and then thoroughly				
	rinsed with clean water of drinking water quality.				

2.3 SUMMARY ON EFFICACY

2.3.1 Efficacy

General overview

Formic acid-based products exert toxic effects on the target organisms.

No efficacy studies have been performed and submitted using only the active substance. Therefore, to review efficacy data available for formic acid, please see information in **Part B** of this CAR.

2.3.2 Mode of action

Different modes of action are reasonably considered to contribute to the biocidal activity of Formic Acid, i.e. acidulant action and corrosion which causes enzyme denaturation and inhibition, cellular structure disruption, and impairment of cellular metabolic pathways.

This mode of action is considered to depend on the low pH-value. Secondly, formic acid does inhibit cytochrome C oxidase and thus impairs cellular energy supply. Organisms and tissues with a high energy demand are specifically susceptible.

- 1. Acidulant: acidification of cytoplasm;
- 2. Inhibitor for decarboxylases and haemin enzymes such as catalase;
- 3. Organic acids in general may disrupt the proton-motive force, as well as inhibit substrate transport, energy-yielding processes and macromolecular synthesis.

Acidulant action is responsible for formic acid being most effective at lower pH values (below 3.5), but enzyme inhibition and other modes also provide some antimicrobial action at higher pH values. Enzyme inhibition is less significant in the control of fungi; therefore, higher concentrations of formic acid are needed to control fungi. The activity of formic acid against some viruses is presumably explained by the action of acid in denaturing polypeptide chains.

2.3.3 Resistance

There is no adaptation to cope with acidic pH values or denaturated proteins, nor is there a mechanism known to exist that a sub-lethal energy supply, due to an incomplete cytochrome C oxidase inhibition, would lead to undesired side-effects or resistance against this inhibitor.

No incidence of resistance to formic acid has been recorded until now.

2.4 CONCLUSION ON EFFICACY

No efficacy studies have been performed and submitted using only the active substance. Therefore, to review efficacy data available for formic acid and to read a conclusion on efficacy, please see information in **Part B** of this CAR.

3 ASSESSMENT OF EFFECTS ON HUMAN HEALTH

3.1 TOXICOKINETICS

In aqueous solution and at neutral pH, formic acid and water-soluble formate salts dissociate and are present as the formate anion in solution. The behaviour of chemical dissociation in water has particularly been investigated with potassium diformate [CAS No. 20642-05-1], which served as test compound in several toxicity studies (DocIIIA6.2_01; FA_BPR_Ann_II_8_8_01: 1997). Based on the physico-chemical properties, it is justified to include kinetic and metabolism studies conducted with water-soluble formate salts.

Potassium formate is expected to form the following equilibriums in aqueous solutions:

HCOOH-HCOOK ≒ HCOOH + HCOOK	[equation 1]
$HCOOH \Rightarrow HCOO^- + H+$	[equation 2]
$HCOOK \rightleftharpoons HCOO^- + K+$	[equation 3]

Mapping the pH as function of dilution and titer curve allowed to estimate the buffer effect of the diformate system

HCOOH-HCOOK \Rightarrow HCOOH + HCOOK [equation 1]

and to calculate the concentration profile of diformate, formic acid and formate as function of concentration in aqueous solutions. The same procedure was applied to formic acid.

The calculations indicate that in aqueous solutions

- i) at pH <4 and at concentrations >0.1% the equilibrium in equation 1 is in favor of potassium diformate.
- ii) at pH of 4 to 5, and at dilution down to 0.001%, most of the formic acid content is released from potassium formate.
- iii) further dilution and increase of pH above 5, the concentrations of formic acid and diformate decrease rapidly, leaving only formate left at pH 7 and above. No diformate exists above pH 7.

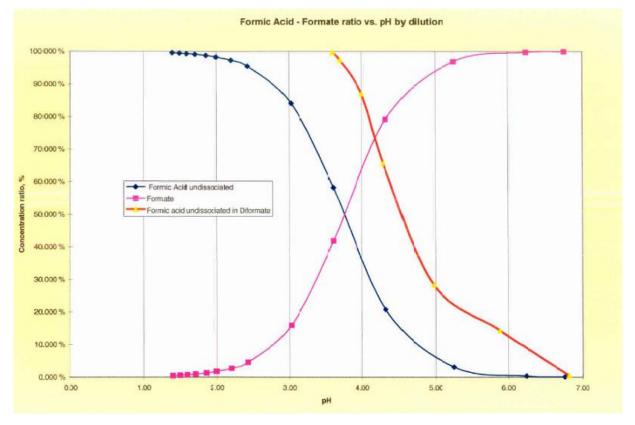


Fig. 3.1 Formic acid – Formate ratio vs. pH by dilution

Formic acid occurs naturally in animals and most plants. Formic acid is an inherent ingredient in human food. The content reported for some common foods and beverages: fruits 20 to 40 mg/kg; honey 20 to 2000 mg/kg; wines 1 to 340 mg/kg; roasted coffee 30 to 40 mg/kg; cheese 20 to 200 mg/kg. Formic acid was added intentionally to some foods such as ice cream, soft drinks and fruit drinks as a flavor adjunct. The dietary consumption in adults was estimated to range between 0.4 and 1.2 mg/kg per day (DocIIIA6.2_09; FA_BPR_Ann_II_8_8_08: Boeniger, 1987). JECFA/IPCS (2003, originally published by WHO, 1997; BPD ID A6.15.4_01b, FA_BPR_Ann_II_8_16_1_01) stated that endogenous formate is generally present in human blood at levels of 0.07 – 0.4 mM (3.2 – 18.4 mg/l). Further, formic acid is required for the biosynthesis of purines and pyrimidines in the intermediary metabolism.

Formic acid is considered to be available by all potential exposure routes.

The toxicokinetic properties and the metabolism of formic acid have been investigated after oral, inhalation, intravenous, or intraperitoneal administration, in different species: rat, mouse, dog, monkey, pig, and humans. None of the studies were performed according to regulatory guidelines (some are pre-guideline). Nevertheless, the studies were conducted in accordance with generally accepted scientific principles, techniques and methods, and hence are acceptable for assessment. In addition, PBPK models were developed based on data collected after intravenous and inhalation exposure.

Justification for read-across:

The repeated dose toxicity via the oral route of formic acid is assessed with its non-corrosive salts, sodium formate and potassium diformate, in order to achieve sufficiently high dose levels. Neurotoxicity is assessed with methanol. A read across approach is provided in accordance with Article 6(3) of the EU No. 528/2012 (BPR) following point 1.5(2) under Annex IV: "common precursors and/or the likelihood of common breakdown products via physical and biological processes, which result in structurally similar chemicals and indicates the

presence of dangerous properties". The full read-across justification, which was performed following the Read-Across Assessment Framework developed by ECHA, can be found in Appendix VII.

The read-across justification concludes that the hypothesis that systemic toxicity of formic acid can be established by its salts, sodium formate and potassium diformate, and a closely related substance methanol, as these chemicals have a common breakdown product *in vivo*, is supported by the available information on physicochemical properties and its toxicokinetics.

When making use of this read-across, reference values will be derived for formate and expressed as mg formate/kg bw/d. At physiological pH 7, formic acid and potassium diformate are both exclusively present as formate anion. Therefore, inside the body, the major form present after exposure to either formic acid or potassium diformate is formate. (pKa of FA is 3.70 at 20°C). In water, there is an equilibrium between formic acid and the dissociated acid (HCOOH \leftrightarrow H+ & COOH-). Once its corrosive properties have been exerted, only formate is released/available. Therefore, for those HH endpoints where read-across is relevant, the endpoint will be expressed as formate. A conversion is not needed as the difference between formic acid and formate is limited to 1 H+ (MW of formate is 1 less than formic acid).

Toxicokinetics

The toxicokinetic properties of formic acid and sodium formate were studied in human volunteers following oral ingestion (DocIIIA6.2_07; FA_BPR_Ann_II_8_8_06: Malorny, 1969b). Formate and formic acid were both rapidly absorbed and reached peak plasma levels within 10 to 30 min after ingestion. Resorption of the unprotonated acid started already in the stomach; sodium formate was converted to the unprotonated acid under the pH conditions of the stomach. After ingestion of a single dose of 1000 mg formic acid (12.5 mg/kg bw), the increase in the plasma level of formate was barely distinguishable against a baseline (about 4 mg/l), while a transient 3- to 4-fold increase in formate (20 mg/l plasma) was noted after ingestion of 2000 mg formic acid (26.7 mg/kg bw). Formate was eliminated from the plasma with a half-life time $t_{1/2}$ = 45 min. The background urinary formate excretion in humans was approx. 13 mg/24 hours. The average urinary excretion accounted for approx. 2 - 4 % of the administered dose, but was very variable among the individuals. The major part of \sim 65 - >80 % was excreted within the first 6 hours after ingestion and returned to normal levels at 12 hours after dosing. The blood pH remained unchanged following single formate or formic acid doses that were equivalent to 3000 mg formic acid. Urine volume and pH were increased as long as formate was excreted via urine.

In a human pharmacokinetic study (Hanzlik et al. (2005); FA_BPR_Ann_II_8_8_10) females (n=14) ingested 3900 mg calcium formate (equivalent to 2700 mg formate). The endogenous formate level was approx. 0.024 ± 0.008 mM in this study. Absorption was fast and the mean maximal serum level of 0.50 mM was seen at 60 minutes after dosing.

The toxicokinetic properties from plasma formate concentrations were studied in the **pig** following **oral** ingestion of potassium diformate by **1998** (DocIIIA6.2-10; FA_BPR_Ann_II_8_8_09). Potassium diformate dissociated to formate in vivo as expected when it was fed with the diet to pigs. Absorption was rapid; the mean half maximal plasma level of approx. 200 mg formate/l plasma was reached in less than 2 hours, and the mean maximal plasma level $C_{max} = 386.4$ mg/l was seen 4 to 5 hours after feeding had been started. The values were derived from those 4 pigs which consumed at least 80% of the feed within 40 minutes after it had been offered. Formate was rapidly and completely eliminated. The mean biological half-life was calculated to be $t_{1/2} = 2.73$ hours, i.e. about 25 % of the amount in blood will be removed per hour (first-order elimination, $k_{el} = 0.25$ h⁻¹). In 3 pigs, control plasma levels (mean: 1.9 mg/l) were reached within 12 hours; after 24 hours all pigs had

normal plasma levels. There was no indication of an accumulation of formate. Only 13.5 % of the high oral dose was found systemically bioavailable. This seemed to be due mainly to the metabolic activity of the liver (hepatic "first-pass effect") and secondly to the urinary elimination. Furthermore, it was assumed that not 100 % of the dose was resorbed, while part of it might also have been subjected to degradation by the gut microflora. A quantitative gastro-intestinal absorption rate could not be derived from this study.

A PBPK model (multicompartment dynamic system) developed by Bouchard et al., 2001 (DocIIIA6.2-03; FA_BPR_Ann_II_8_8_02), described the toxicokinetics of methanol, formaldehyde and formic acid in rats, monkeys, and humans for up to 48 h following **inhalation** exposure to methanol. The volume of distribution of formate of 6.4 to 4.2 l/kg bw suggested that a significant proportion of formate distributes in the tissue, but more likely undergoes rapid metabolism and excretion, thus leading to an apparently high distribution volume. The metabolism rate constant ratio k_{form}/k_{fald} was twice as high in rats as in monkeys (0.53 vs. 0.26). Thus, in monkeys and plausibly in humans, a much larger fraction of formaldehyde is rapidly converted to unobserved forms rather than metabolized to formic acid and further to CO₂. For humans, the simulations showed that after continuous inhalation of 260 mg methanol/m³ (200 ppm) for 5 days, methanol-related blood and urinary formate levels (0.16 mg/L and 1.5 mg/L, respectively) remained far below reported baseline levels in unexposed subjects (4.9-10.3 and 6.3-13 mg/L, respectively). Furthermore, the model predicted that an 8-hour inhalation of 650 - 2600 mg/m³ (500 to 2000 ppm) methanol would be required to reach endogenous baseline values of formate.

Additional information on distribution is provided in section 3.6.1 on sub-chronic oral toxicity: systemic bioavailability data were provided in the study by (1998; BPD ID A6.4.1_01, FA_BPR_Ann_II_8_9_2_01) notably it was reported that formate plasma levels of approx. 90 to 160 mg /L were regularly found in rats after oral exposure to potassium diformate. In section 3.14 on Further human data, for a case report on suicidal ingestion of Formic Acid, data on post-mortem formate concentrations are available.

Crossing of barriers as blood/brain, blood/testes, blood/placenta, and exposure via the breastmilk: It may be deduced from the physico-chemical properties of formic acid that the possibility of formate to cross the mentioned barriers is low. The substance is highly soluble in water and the logKow is around -2.0. The pKa is 3.70 at 20°C, and therefore formic acid (and the related salt potassium diformate) is almost exclusively present in the ionised form at physiological pH (DocIIIA6.2-01; FA_BPR_Ann_II_8_8_01). It is known that only the unionised form is likely to cross biological membranes, and that substances with a logP of 2-4 would likely cross membranes. The physico-chemical properties of formic acid differ largely, hence it is unlikely that formate would cross biological membranes. This does not preclude the uptake by means of active transport systems. Penetration into (and through) membranes may occur in minor quantities because the small size of the formate molecule. Transfer into breast milk may be given due to the high solubility in water. In this context it should also be mentioned that endogenous formic acid is produced in the intermediary metabolism in humans, and that the C1-fragment is required in the biosynthesis of amino acids and nucleic acids (DocIIIA6.2-09; FA_BPR_Ann_II_8_8_08), i.e. there is a need in the developing fetus. Excess blood formate is rapidly metabolised to background levels in humans, i.e. formate does not accumulate. Finally, there were no adverse effects noted in the testes, the brain, or the development of offspring, in any of the numerous studies requiring repeated dosing. This includes all subchronic and chronic repeated dose studies, carcinogenicity studies, multigeneration reproduction and teratogenicity studies, conducted in several species (rat, mouse, rabbit, pig) with either sodium formate or potassium diformate. Neurotoxicity is known to occur in humans only in the optical nerve following severe methanol intoxication leading to very high blood formate levels over an extended period of time (DocIIIA6.9; FA_BPR_Ann_II_8_13_2_0). Thus, though formate crossing of the blood/brain, blood/testes, blood/placenta barriers, and the exposure via the breast milk cannot be fully excluded, no adverse effects were seen in the parental animals and their progeny of several species following high-level long-term dosing, or dosing during reproduction and development, of either sodium formate or potassium diformate.

Metabolism

The metabolism of formic acid in animals has been extensively documented. Formic acid is an intermediate in normal metabolism. It takes part in the metabolism of one-carbon compounds and its carbon may appear in methyl groups undergoing transmethylation. The metabolic oxidation of formate to CO_2 involves tetrahydrofolate (THF). Formyl-THF synthetase catalyzes the binding of formate to THF to yield 10-formyl-THF. The latter liberates CO_2 , and the folate moiety is reduced to THF by Formyl THF dehydrogenase.

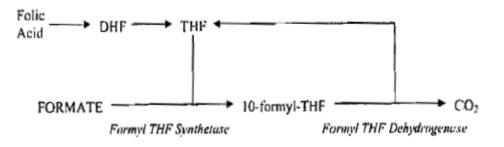
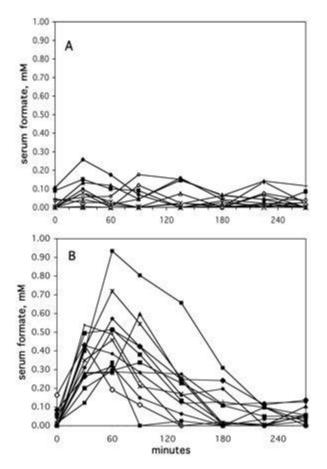



Fig. 3.2 Oxidation of formate to CO2

The oxidation rate of formate to CO₂ depends on the hepatic folate pathway, i.e. the levels of folate coenzymes and folate-dependent enzymes. These levels are higher in rodents than in primates, and consequently the rate of formate oxidation to CO₂ is also higher in rodents (DocIIIA6.2_04; FA_BPR_Ann_II_8_8_03: NTP, 2004). In monkeys, the maximum elimination rate of formate is reported to be about 34 mg/kg bw/h, whereas in rats it was about 73 mg/kg bw/h (BPD ID A6.2_12; FA_BPR_Ann_II_8_8_13: Kavet & Nauss, 1990). The formate plasma elimination half-life in various species following intravenous infusion (see table 3.1-1) was discussed in a review by Malorny, 1969a (DocIIIA6.2_06; FA_BPR_Ann_II_8_8_05). There is a clear species difference in the extent of formic acid metabolism and elimination rate which is consequently dose-dependent. As humans and primates have reduced capacity for formate oxidation compared with rodents and dogs, humans and primates are more susceptible to formate intoxication.

Formic acid was rapidly oxidised to CO₂ and water by the liver in human volunteers, while a minor part of 2 to 4 % was excreted unchanged into the urine within 24 hours (DocIIIA6.2_07; FA_BPR_Ann_II_8_8_06: Malorny, 1969b). Based on the first-order elimination kinetics (see Table 3.1-1), it is evident that after exposure to one single dose of formic acid or formate salt that was systemically bioavailable, normal blood levels will be reached within 4 to 5 hours post-application in humans.

In the recent single dose human study (FA_BPR_Ann_II_8_8_10: Hanzlik et al, 2005), a mono-exponential decline of serum concentrations with an average half-life of 59 +/- 7 minutes was seen, and baseline levels were reached within 240 minutes after dosing (see figure and legend below).

Fig. 3.3 Plasma formate concentration versus time for 14 adult female human subjects following administration of placebo (A) or calcium diformate (B).

This finding is in good correlation with the earlier reported human half-life of 45 minutes (Malorny (1969b); BPD ID A6.2_07; FA_BPR_Ann_II_8_8_06).

The disappearance of formate from blood is shown in Table 3.1-1.

Table 3.1-1	Table 3.1-1: First-order elimination half-lives of formate in blood plasma in various species					
Species	t _{1/2} (min)	Source				
Rat	12	BPD ID A6.2_06; FA_BPR_Ann_II_8_8_05: Malorny, 1969a				
Guinea pig	22	BPD ID A6.2_06; FA_BPR_Ann_II_8_8_05: Malorny, 1969a				
Rabbit	32	BPD ID A6.2_06; FA_BPR_Ann_II_8_8_05: Malorny, 1969a				
Monkey	30 - 50	BPD ID A6.2_11; FA_BPR_Ann_II_8_8_12: Clay et al., 1975				
Human	45	BPD ID A6.2_07; FA_BPR_Ann_II_8_8_06: Malorny, 1969b				
Human	59	FA_BPR_Ann_II_8_8_10: Hanzlik et al., 2005				
Cat	67	BPD ID A6.2_06; FA_BPR_Ann_II_8_8_05: Malorny, 1969a				
Dog	77	BPD ID A6.2_06; FA_BPR_Ann_II_8_8_05: Malorny, 1969a				
Pig	87	BPD ID A6.2_08; FA_BPR_Ann_II_8_8_07: Makar et al., 1990				
Pig	164	BPD ID A6.2_10; FA_BPR_Ann_II_8_8_09: 1998				

The pig shows the most limited metabolic capacities of reported test species (mouse >rat >monkey >human >pig). Formate metabolism in the pig in comparison to the rat was studied by Makar et al. (1990) (DocIIIA6.2_08; FA_BPR_Ann_II_8_8_07). 14C-radiolabeled formate was applied i.p. and determined in blood only, not including urine levels and exhaled CO2. No complete mass balance was provided. The species-specific metabolic capacities of the liver to convert formate were also analysed. The results indicated that the pig has very low levels of folates and low levels of key enzyme in the folate pathway as compared to rodents, monkey and humans. The pig's ability to dispose of formate was found more limited and much slower than that observed in rats or monkeys. It was suggested that the pig may be a suitable model for studying formate metabolism, because accumulation of formate and susceptibility to its toxic effects must be considered.

In humans, formate bioaccumulation is less likely to occur, based on the results of the early and the more recent single dose human studies (e.g. FA_BPR_Ann_II_8_8_10: Hanzlik et al, 2005), and based on the results of a recent repeat dose human study (Altaweel et al., 2009: FA BPR Ann II 8 8 11). No formate accumulation was noted in a 14-day human study (12 females) who ingested 3900 mg calcium formate/day. The baseline serum formate level was 0.539 ± 0.06 mM in this study, maximal serum levels were approx. 0.8 mM (see below; figure and legend from Altaweel et al. (2009); FA_BPR_Ann_II_8_8_11).

Fia. 3.4 Serum formate concentrations determined prior to and throughout the 14-day study. The concentrations observed at screening (S) do not vary significantly, either for time groups or for individual subjects, over the course of the study. Observations 1a, 2a, 3a, 8a, and 15 were made prior to the first dose of the day indicated, while observations 1b, 2b, 3b, and 8b were made 40–60 min after ingesting the second 1,300 mg dose of calcium formate on the day indicated. The sample times "a" and "b" correspond, respectively, to the times of trough and peak levels of serum formate following single doses (see Ref. 36). The data show no accumulation of serum formate with repeated administration of 1,300 mg calcium formate three times per day over 14 days.

Data on maximum blood levels of formate reported after single or repeated dosing of formic acid or formate salt are summarised in Table 3.1-2.

Massive serum formate levels are seen in primates (humans, monkeys) following methanol intoxication (see below). Higher formate serum levels are achievable following oral ingestion, compared to inhalation or dermal absorption. Massive serum formate levels are seen in primates (humans, monkeys) following methanol intoxication, whereas levels remain low in rats (not listed) unless the formic acid oxidase is inhibited by N2O-treatment. Under these conditions, formate levels are comparable to those seen in primates, i.e. the metabolic capacity of the rat was lowered to that of the primates, and under these conditions, the rat is also susceptible to toxic optical neurotoxicity.

Table 3.1-2: Maximum formate blood levels either after dosage of formic acid orformate salt or following methanol poisoning (see also Table 3.1-3)

Species	Substance	Route	Dose [mg/kg bw]	Peak blood level [mg/l]	Reference
Dog	Formic acid or Na formate	i.v. (~10 min)	~54 (as formic acid)	~200	BPD ID A6.2_06; FA_BPR_Ann_II_8_8_05: Malorny, 1969a
Pig	Na formate [CAS No. 141-53-7]	i.p.	~350 (as formic acid)	~470	BPD ID A6.2_08; FA_BPR_Ann_II_8_8_07: Makar et al., 1990
Pig	Potassium diformate [CAS No. 20642-05- 1]	oral feed	~700 (as formic acid)	~400	BPD ID A6.2_10; FA_BPR_Ann_II_8_8_09:
Human	Formic acid	oral	~13	4 – 5 (baseline)	BPD ID A6.2_07; FA_BPR_Ann_II_8_8_06:
(single cases)	or Na formate	oral	~27	20	Malorny, 1969b
cases)	na ronnace	oral	~40	85	
Human (n=14) Single dose	Calcium formate	oral	2700 mg (as formate)	0.50 mM (mean)	FA_BPR_Ann_II_8_8_10: Hanzlik et al., 2005
Human (n=12) 14-day repeated dose	Calcium formate	oral	2700 mg/day (as formate)	0.572 mM (mean)	FA_BPR_Ann_II_8_8_11: Altaweel et al., 2009
Rat, N ₂ O- pre- treated	Methanol intoxication	oral	4000 mg/kg (methanol)	16 mM	Cited in

					BPD ID A6.10_01; FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000
Monkeys	Methanol intoxication	oral	Dose not stated (methanol)	11.4 mM	Cited in BPD ID A6.10_01; FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000
Humans	Methanol intoxication	oral	Dose not stated (methanol)	19.3 mM	Cited in BPD ID A6.10_01; FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000

A great deal of knowledge about the metabolism of formic acid has been extensively documented within the investigations into the mechanism of methanol intoxication. Formic acid is one of the main metabolites of methanol. The absorption, distribution and elimination of methanol and formate have successfully been modeled after inhalation exposure to methanol in various species including humans. The model predictions were in good agreement with experimental data in various species, i.e. rat, monkey, and human data, suggesting that the values of the pharmacokinetic constants used in the model are close to real values (DOCIIIA6.2_03; FA_BPR_Ann_II_8_8_02: Bouchard et al., 2001).

Formate has to be considered as the causative agent for optical neural damage in methanolintoxicated humans and animals (DOCIIIA6.2_05; FA_BPR_Ann_II_8_8_04: Martin-Amat et al., 1978; DocIIIA6.10_01; FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000). The blood levels of formate that correlated with the emergence of pathological changes were very high: In a review by Eells et al. (2000) the following values after accidental and experimental methanol intoxication were summarised (see fig 3.5 representing Table 2 from Eells et al. (2000)):

Species	Blood Formate (mM)	Blood Bicarbonate (mEq/L)	Blood pH
N ₂ 0 - Treated Rats ^a	16.1 ± 0.7	7.7 ± 1.2	6.91 ± 0.06
Monkeys⁵	11.4 ± 1.2	6.5 ± 0.5	7.19 ± 0.02
Humans ^{c,d}	1 9.3 ± 4.4	3.2 ± 0.4	6.93 ± 0.02

TABLE 2. Blood formate, pH and bicarbonate concentrations in methanol-intoxicated rats, monkeys and humans.

Note: Methanol-intoxicated rats were exposed to a mixture of N_2O/O_2 (1:1) for 4 hours prior to methanol administration (4 g/kg at zero time followed by 2g/kg at 12-hour intervals) and exposure to the gas mixture was continued throughout the experiment. Blood formate concentrations and blood gas measurements were determined 60 hours after the initial dose of methanol. Each value represents the mean ± SE for 6 rats. Rodent data was compiled from studies by Eells *et al.*, (1996)^a. The monkey data was compiled from studies by Martin-Amat *et al.*, (1977)^b and the human data was compiled from studies conducted by McMartin *et al.*, (1980)^c and Eells *et al.*, (1991)^o.

Fig. 3.5	Eells et al. (2000)) Table 2
----------	--------------------	------------

In four monkeys (Rhesus, Maccaca mulatta) receiving ~142 mg/kg bw/h of Na formate by i.v. infusion, the (steady-state) blood levels of formate amounted to 540, 950, 1350, and 1530 mg/l after 12, 20, 30 and 34 hours, respectively (DocIIIA6.2_05; FA_BPR_Ann_II_8_8_04: Martin-Amat et al., 1978). After 10 hours, all animals accumulated maximum formate in blood between 10 and 30 mEq/L (460 – 1380 mg/l). Under this extreme dosing regimen, the elimination half-lives had increased considerably up to about 5 hours, evidently due to metabolic overload and saturation [compare the dose of 142 mg/kg bw/h with the maximum metabolic capacity of 34 mg/kg bw/h, see above].

Critical blood concentrations of 8 – 15 mM formate (= 360 - 680 mg/l) maintained over 30 - 40 hours were considered potentially detrimental, producing experimental ocular toxicity in monkeys (DocIIIA6.2_05; FA_BPR_Ann_II_8_8_04: Martin-Amat et al., 1978) and were associated with visual toxicity in acute cases of human methanol intoxication (DocIIIA6.10_01; FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000).

Inhalation exposure to formic acid is supposed to be limited due to the warning of its pungent smell and its respiratory irritation unless through accidental events. 60 mg/m3 is considered to be the 13-weeks NOAEC for histological changes in the nasal region of rats and mice [see 13-week studies on rats and mice, DOCIIIA6.4.3_01/ FA_BPR_Ann_II_8_9_2_03 and DOCIIIA6.4.3_02/ FA_BPR_Ann_II_8_9_2_04, and section 3.6.4]. As for solid formate, inhalable quantities of solid formate salts are limited.

Assuming 100% absorption, a human body weight of 60 kg, and a high respiration volume of 1.25 m3/h under working conditions (BPD ID A6.12.8_01; FA_BPR_Ann_II_8_12_8_01: NIOSH, 1990), this concentration would correspond to a systemic dose of 610 mg/8 h or ~10.2 mg/kg bw/d or ~1.3 mg/kg bw/h.

Compared with the maximum conversion rate of formate to CO2 in primates (BPD ID A6.2_12; FA_BPR_Ann_II_8_8_13: Kavet & Nauss, 1990), such an exposure level would not result in accumulation of formate.

At the maximum occupational exposure level of 5 ppm (9.5 mg/m3), the systemic dose would be only 1.6 mg/kg bw/d or 0.2 mg/kg bw/h under these assumptions (BPD ID BPD ID A6.12.8_01; FA_BPR_Ann_II_8_12_8_01: NIOSH, 1990).

Table 3.1-	Table 3.1-3 Main results from key and supporting study summaries						
Summary	table of tox	icokinetic stud	ies				
Method Guidelin e, GLP status, Reliabilit Y	Species, Strain, Sex, No/Grou P	Test substance, Dose levels Duration of exposure	Results	Remarks (e.g. major deviations)	Reference		
In vitro / Physico- chemical studies on the behaviour of the TS in	n.a.	Formic acid [CAS No. 64- 18-6] Potassium diformate [CAS No. 20642-05-1]	At physiological pH 7, formic acid and potassium diformate are both exclusively present as formate anion		1997 BPD ID A6.2_01 FA_BPR_Ann_II_8_8 _01		

aqueous solutions. No guideline available		Route: not applicable Test procedure: Titration, calculations		
In vivo / No data, pharmaco -logical standards	Dog, not specified, 6/group	Formic acid [CAS No. 64- 18-6] and Na formate [CAS No. 141-53-7] Route: i.v. (~10 min) Dose: ~54 mg/kg bw Sampling intervals : 0, 1, 2, 4 hours after dosing: blood pH, formate blood levels	Elimination: from blood $t_{1/2} = 77 \text{ min}$ $k_{el} = 0.54 \text{ h}^{-1}$ <u>Blood levels:</u> Max. ~200 mg/l, Return to normal after 4 h <u>Baseline blood</u> <u>level</u> : ~7 - 12 mg/l (but high variance) <u>Blood pH:</u> transient acidosis, severe after formic acid and slight after Na formate, Return to normal after 3 to 4 h	Malorny, 1969a BPD ID A6.2_06 FA_BPR_Ann_II_8_8 _05
In vivo / No data, pharmaco -logical standards	Humans m + f 12, 7 and 2-3 per group	Formic acid [CAS No. 64- 18-6] and Na formate [CAS No. 141-53-7] Route: oral Formic acid: 0.4% aqueous solution Na formate: in food Single dose Formic acid: 2000mg Na formate: 1.48, 2.96, 4.44 g (equivalent to 1000, 2000, and 3000 mg	Absorption: rapid, maximum in blood after 10 - 30min <u>Bioavailability:</u> at 13 mg/kg bw in blood barely measureable, at ≥ 27 mg/kg max. 3-4fold increase in blood. Baseline blood level: $\sim 3 - 4$ mg/l (2 subjects) and 18 mg/l (1 subject) Max. blood level:	Malorny, 1969b BPD ID A6.2_07 FA_BPR_Ann_II_8_8 _06

		formic acid = ~13, 27, and 40 mg/kg bw) Sampling: kinetics plasma levels: blood after 5, 120 min; urine after 15 min to 6 h urinary excretion: before, 0-6, 6-12, 12-24 hrs after ingestion blood pH: before, at 15, 30, 45, 60, 75, 90 min after ingestion	20 - 85 mg/l at 2000 mg Elimination: from blood $t_{1/2} = 45$ min => $k_{el} = 0.92$ h ⁻¹ Clinical signs: transient gastric irritation immediately after the ingestion of 2 g formic acid as 0.4% aqueous solution.	
In vivo / no data	Pig (crossbred) n=6 sex not reported <i>Control</i> <i>animal:</i> <i>Rat</i> <i>Spraque-</i> <i>Dawley</i> <i>male, n=5</i>	 ¹⁴C-Na formate [CAS No. 141-53-7] Route: i.p. Dose: 500 mg/kg bw. (~350 mg formic acid/kg) Blood kinetics and liver folate metabolism (comparison among various species) Sampling intervals: 90, 180, 240, 300 min after dosing 	Elimination: from blood $t_{1/2} = 87 \text{ min}$ $k_{el} = 0.48 \text{ h}^{-1}$ Max. blood level: ~470 mg/L The pig shows the most limited metabolic capacities of reported test species (mouse >>rat >monkey >human >pig).	Makar et al., 1990 BPD ID A6.2_08 FA_BPR_Ann_II_8_8 _07
In vivo / No data, pharmaco I. standards	Pig Crossbred (50% Duroc, 25% Yorkshire,	Potassium diformate [CAS No. 20642-05-1]	Absorption: rapid with maximum in blood after ~4 h	1998 BPD ID A6.2_10 FA_BPR_Ann_II_8_8 _09

		1		
	25% Danish Landrace) n=4, female	Route: 6% in oral feed High single dose: 1000 mg/ kg bw (= ~700 mg formic acid/kg bw) Blood sampling: before, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 12, 24 hours after at least 80% of the feed was eaten. Plasma formate concentration s used for calculation of the biological half-life (t1/2), AUC, and Cmax. Calculations according to a two compartment pharmacokine tic model, absorption and elimination processes considered to follow first- order kinetics.	Bioavailability: Mean dose systemically bioavailable (AUC) = 2834.6 mg x h/l = ~13.5 % of the mean dose applied Baseline blood level: ~1.9 mg/l Max. blood level, C _{max} = 386 mg/l Elimination: from blood $t_{1/2} = 2.73$ h $k_{el} = 0.25$ h ⁻¹ Plasma formate concentrations returned to baseline after ~12 h p.a.	
In vivo / No data, pharmaco I. standards	Human subjects, females, n=14	Calcium formate [CAS No. 544-17- 2] Route: oral Single oral dose, 3900 mg (i.e. 2700 mg formate),	Endogenous formate level 0.024 ± 0.008 mM <u>Absorption</u> : maximal serum level (mean: 0.50 mM) @ 60	Hanzlik et al., 2005 FA_BPR_Ann_II_8_8 _10

		split into 6 doses of 650 mg each	min after dosing. <u>Elimination</u> : mono- exponential decline of serum concentrations, average half-life 59 +/- 7 min. Baseline levels within 240 minutes post dosing	
In vivo / No data, pharmaco I. standards	Human subjects, females, n=12	Calcium formate [CAS No. 544-17- 2] Route: oral 14-days study, 3900 mg/day (i.e. 2700 mg formate/day), split into 3 daily doses of 1300 mg each	Mean basal serum formate level before study initiation: 0.539 ± 0.06 mM Formate levels only slightly increased at 40- 60 min after dosing: up to 0.8 mM: No formate accumulation: serum formate level on day 15: 0.582 ± 0.091 mM; no significant difference between this value and the basal level before treatment (p=0.268).	Altaweel et al., 2009 FA_BPR_Ann_II_8_8 _11

3.1.1 Short summary of the toxicokinetic information

Conclusions:

Formic acid is considered to be available by all potential routes of exposure. Inhalation may be the most relevant route during production and application.

For risk characterisation a value of 100% is used for oral absorption (rapid, but no quantitative data available) and for absorption via inhalation (no data available).

Dietary consumption of formic acid and its salts (estimated 0.4 and 1.2 mg/kg bw/day), inhalation as air contaminant as well as the endogenous turn-over maintain a baseline blood level of about 3 to 18 mg/l in humans; in a more recent study, it was found to be 0.539 mM.

Biotransformation of formate to CO2 in primates is rapid: the first-order elimination half-life in human blood is approx. 45 min, corresponding to an elimination constant of about 0.9 h-1, and the metabolic oxidation rate of formate is reported to be 34 mg/kg bw/h (0.75 mmol/kg bw/h). In human volunteers, a minor part was excreted unchanged into the urine within 24 hours. No accumulation is expected to occur, except at prolonged exposures above the critical capacity limit.

The steady-state blood concentration from a continuous dosage of 10 mg formic acid/kg bw/h that is systemically bioavailable will be of the order of 11 mg/l in humans, while a continuous dose of 30 mg/ kg bw/h, at the borderline of metabolic saturation, is supposed to level off at 33 mg/l (see assumptions and estimation below).

Following inhalation, the experimental NOAEC of 61 mg/m3 in mice, corresponding to a 8-h dose of \sim 1.3 mg/kg bw/h would remain well below the metabolic capacity limit and result in a transient steady-state of approx. 17 mg/l in blood (in addition to the baseline level).

At the maximum occupational exposure level of 5 ppm (9.5 mg/m3), the systemic dose would be only 0.2 mg/kg bw/h, and the increment expected in blood would be indistinguishable from the endogenous fraction in blood.

Toxic effects are only expected, if the maximum metabolic oxidation rate becomes exhausted [>34 mg/kg bw/d], and thus critical formate blood concentrations are reached. These are reportedly in the range of 8 to 15 mM (= 360 - 680 mg/l).

The estimation below demonstrates that a bioavailable body burden of 1 mg formate/kg bw/h still fails to produce blood increases that are distinguishable from the baseline level, remaining at a factor of 300 to 600 below toxicologically relevant blood levels.

Estimation of a steady-state blood level:

The single-dose data can be used to estimate a blood concentration in equilibrium (steady state):

Assumption: Continuous oral uptake

Exemplary dose [D]: 1, 10, and 30 mg/(kg bw*h)

Gastro-intestinal bioavailability: 100 %

Elimination constant [kel]: 0.9 h⁻¹ (from BPD ID A6.2_07/ FA_BPR_Ann_II_8_8_06)

Distribution volume [Vd]: 1 litre/kg bw*)

^{*)} Note: Reportedly, the distribution volumes for formate range from about 4 to 6 litre/kg bw. But these values appear to be governed mainly by the rapid metabolism and excretion from the circulatory system. However, these processes are already comprised in the elimination constant k_{el} . Hence, a *high* distribution volume in the algorithm would be a bias resulting in underestimating the blood level. Therefore, adopting the conservative assumption of 1 litre/kg bw for the distribution volume of formate appears to be the more appropriate approach.

The steady-state concentration $[C_{eq}]$ is described by the following equation:

$$\mathbf{C}_{eq} = \frac{\text{Dose [mg/h]}}{\text{bw } * \text{V}_{d} * \text{k}_{el}} \text{mg/l}$$

Table 3.1-4 Predicted steady-state concentration in blood Ceq during continuousdosage of Na-formate above baseline level						
	[h ⁻¹] /	concentration continuous do Na-formate a (excluding ba	Predicted steady-state concentration in blood C _{eq} during continuous dosage of Na-formate above baseline level (excluding baseline) (assumed absorption rate 100 %)			Toxicologically relevant level [mg/l]
		Dose [mg/(k	g∗h)]			
		1	10	30		
Pig	0.25 / 1	40 120			~2 ¹⁾	No data
Human	0.90 / 1	1.1	11	33	3 - 18 ²⁾	>360 ³⁾

¹⁾ from BPD ID A6.2_10/ FA_BPR_Ann_II_8_8_09

²⁾ from BPD ID A6.2_07/ FA_BPR_Ann_II_8_8_06

³⁾ BPD ID A6.10_01/ FA_BPR_Ann_II_8_13_5_01

Dermal absorption

Dermal absorption of formic acid has not been investigated. Due to the corrosive properties of formic acid, no dermal absorption study is requested. In a first tier of risk assessment, a worst case value for dermal absorption of 100% is used for external dermal exposure. Severe metabolic acidosis resulting from dermal contact with formic acid as described in several case reports (see section 3.3 and 3.14), demonstrated rapid dermal absorption through the acid-burned skin.

3.1.2 Values and conclusions used for the risk assessment

Value(s) used in the Risk Assessment – Oral absorption				
Value(s)	100%			
Justification for the selected value(s)	Formic acid is rapidly absorbed after oral ingestion by humans (DocIIIA6.2_07; FA_BPR_Ann_II_8_8_06: Malorny, 1969b) Rapid absorption, but no quantitative data available ³			

Value(s) used in the Risk Assessment – Dermal absorption

³ Due to animal welfare reasons an oral absorption study was not provided for formic acid as corrosive substance. However, the available toxicokinetic data and data on absorption after accidental or suicidal oral ingestion of the substance by humans indicate rapid and almost quantitative absorption.

As worst case 100% absorption is assumed.

Generally, the smaller the molecule the more easily it may be taken up. With a molecular weight of 46.03 g/mol formic acid is very favorable for oral absorption.

Furthermore, formic acid is miscible with water at any ratio which also favors oral absorption since water-soluble substances will readily dissolve into gastrointestinal fluids. Additionally, molecules with a molecular weight lower than 200 may pass through aqueous pores or may be carried through the epithelial barrier by the bulk passage of water.

Together with the observed clinical signs after oral ingestion, it is highly probable that formic acid is orally absorbed to a high extent.

Value(s)**	100%
Justification for the selected value(s)	Dermal absorption of formic acid has not been investigated. A dermal absorption of 100% is used for external dermal exposure because rapid dermal absorption was demonstrated following acid skin burns in several case reports.

** the dermal absorption value is applicable for the active substance and might not be usable in product authorization

Value(s) used in the Risk Assessment – Inhalatory absorption		
Value(s)	100%	
Justification for the selected value(s)	no data available (assumed 100% resorption)	

Conclusion(s) used in the Risk Assessment – Distribution			
Conclusion	No data		
Justification for the conclusionno data available; assumed distribution in the aqueous compartme seemingly a significant proportion of formate distributes in the tiss but more likely undergoes rapid metabolism and excretion Assumptions presented are based on a PBPK model. The physico-chemical properties of formic acid suggest the likelihoo of it crossing blood/brain, blood/testes, and blood/placenta barriers low. Transfer into breast milk may occur due to high water solubilit			

Conclusion(s) used in the Risk Assessment – Metabolism				
Conclusion	Rapid oxidat	Rapid oxidation to CO ₂ and H ₂ O		
	No toxicolog	No toxicologically significant metabolites		
Justification	maximum el	maximum elimination rate of formate:		
for the	Monkey: 34 mg/(kg bw*h)			
conclusion	73 mg/(kg bw∗h)			

Conclusion(s) us	Conclusion(s) used in Risk Assessment – Elimination		
Conclusion	Rapid elimination from blood plasma		
	No potential for accumulation		
	Rate and extent of excretion: human: 2 to $4\%/24h$ unchanged into the urine, $\sim65 - >80\%$ thereof excreted within the first 6h.		
Justification for theHumans: elimination half-life $(t1/2) = 45$ min correspondin elimination constant of about 0.9 h ⁻¹			
conclusion	Rapid biotransformation of formate to CO ₂ in primates		
	Metabolic oxidation rate of formate 34 mg/kg bw/h (monkey).		

	volunteers: mi 24 hours (see al	-	eted unchanged into the urine	
No accumulation is expected to occur, except at prolonged exposures above the critical capacity limit.				
	<u>Species</u>	<u>t_{1/2} (min)</u>		
	Rat	12		
	Guinea pig	22		
	Rabbit	32		
	Monkey	30 - 50		
	Human	45		
	Cat	67		
	Dog	77		
	Pig	87		
	Minipig	164		

3.2 ACUTE TOXICITY

The acute toxic action profile of formic acid is predominantly determined by its inherent irritating/corrosive properties. The toxicity values after oral uptake and inhalation in rats suggest formic acid to be acutely harmful. The clinical signs give no evidence of specific systemic adverse effects.

3.2.1 Acute oral toxicity

Summary ta	Summary table of animal studies on acute oral toxicity					
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance Dose levels, Type of administration (gavage, in diet, other)	Signs of toxicity (nature, onset, duration, severity, reversibility)	Value LD50	Remarks (e.g. major deviations)	Reference
OECD 401 GLP: no Rel: 1	Rat Wistar m + f 5/sex/grou p	Formic acid purity 99% Lot/batch: no data 501, 631, 794, 1000 mg/kg bw gavage	Clinical signs: - observed 30 min after dosing: unkept fur, hunched posture, stagger, aggressiveness, dyspnea, sedation and ataxia, lateral and abdominal position, convulsions, bloody noses, blood in urine. - later: hypothermia, pale limbs, body weight loss. - Symptoms subsided and were absent in all animals but one which showed symptoms until d14.	730 mg/kg bw (m +f) Males: 863 mg/kg bw Females: 618 mg/kg bw		BPD ID A6.1.1_01, FA_BPR_Ann_II_8_7 _1_01:

Formic acid is of moderate toxicity via the oral route when tested in the rat. Oral $LD_{50} = 730 \text{ mg/kg bw}$.

BPC-43-2022-07B

After a single *oral* administration of formic acid in the rat (DocIIIA6.1.1-01, FA_BPR_Ann_II_8_7_1_01: 1985), there was a clear dose-response relationship with respect to mortality and decrease in body-weight gain of survivors. The clinical symptoms and pathological organ lesions (hyperemia of the stomach and intestines, congestion in spleens, mottled livers and kidneys, discoloration of kidneys and pancreas) are largely nonspecific and can be explained primarily by the local corrosive character of formic acid, associated secondary systemic effects.

For human data: see section 3.14.

Several case reports report on fatal suicidal ingestion of formic acid (see section 3.14 for a detailed discussion). Due to the corrosivity of formic acid, local effects occur at all dose levels. The amount ingested and the concentration determine the grade and the location of the effects. Therefore, the observations range from moderate burns around the mouth to severe corrosion of the gastro-intestinal tract with destruction of the esophagus, perforation of the stomach, and corrosion of the small intestine together with massive bleeding and systemic toxicity. Systemic toxicity was seen after ingestion **of 30 g formic acid** or more. Prognosis is poor after massive oral ingestion (>45 to 200 g formic acid); prognosis is moderate after moderate oral ingestion (approx. 30 to 45 g); lesions, but low mortality, are expected in most cases with low amounts ingested (<30g); persistent lesions due to tissue corrosion must be expected in cases with >10 g formic acid ingested. Tissue destruction of the gastrointestinal tract may result in fatal bleeding, septic shock, or stricture which may require surgical treatment. Reversibility of effects was often seen in cases with low amounts ingested (<10 g formic acid).

Important note: Final LD₅₀ will be set by RAC; it is the LD₅₀ value from the adopted RAC opinion that will need to be used in biocidal product authorisation.

Value used in the Risk Assessment – Acute oral toxicity			
Value	LD ₅₀ 730 mg/kg bw ⁴		
Justification for the selected value			

⁴ Final LD₅₀ will be set by RAC; it is the LD₅₀ value from the adopted RAC opinion that will need to be used in biocidal product authorisation.

3.2.2 Acute dermal toxicity

Summary ta	Summary table of animal studies on acute dermal toxicity				
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance, Vehicle, Dose levels, Surface area,	Value LD50	Remarks (e.g. major deviations)	Reference
OECD 402 GLP: yes Rel: 1	Rat Wistar m + f 5/sex/group	Sodium formate [CAS No. 141-53-7] purity 100% Lot/batch: 1292066 2000 mg/kg bw limit test Vehicle: 0.5% CMC 24 hours, semi-occlusive Surface area 40 cm ² (10% of body surface)	>2000 mg/kg bw No clinical signs, or local, or systemic effects observed. No mortality.	Other test substance: sodium formate	BPD ID A6.1.2_01, FA_BPR_Ann_II_8_7_3_01

No acute *dermal* study has been conducted with formic acid itself because of its corrosive properties. After single dermal exposure of the sodium salt in the rat (DocIIIA6.2.1-01, FA_BPR_Ann_II_8_7_3_01: 2007), no local irritation and systemic effects were observed. Dermal LD₅₀ of sodium formate >2000 mg/kg bw.

Human case reports on acute 'accidental' dermal (and inhalation) exposure are rather rare. Besides local effects, severe acid skin burns and respiratory tract irritation, patients suffered and recovered rapidly from metabolic acidosis (described in section 3.3 and 3.14).

Value used in the Risk Assessment – Acute dermal toxicity			
Value	No data available on formic acid		
	Supportive data:		
	Sodium formate: LD ₅₀ >2000 mg/kg bw		

BPC-43-2022-07B

Justification for the selected	According to regulation (EU) 528/2012 Annex II 8.7 acute toxicity studies does not generally need to be conducted if the substance is classified as corrosive to the skin due to animal welfare reasons.
value	Hence, the information on the acute dermal toxicity of the corresponding salt, sodium formate, is only supportive information, as no information on acute dermal toxicity is needed for this substance.
	BPD ID A6.1.2_01, FA_BPR_Ann_II_8_7_3_01: 2007 Acute dermal toxicity of sodium formate has been assessed in a study according to OECD 402.

Data waiving	
Information requirement	Acute dermal toxicity of formic acid
Justification	Corrosive substance

3.2.3 Acute inhalation toxicity

Summary ta	Summary table of animal studies on acute inhalation toxicity				
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance, form (gas, vapour, dust, mist) and particle size (MMAD)		Remarks (e.g. major deviations)	Reference
		Actual and nominal concentration, Type of administration (nose only / whole body/ head only)			

Belgium

PT4

BPC-43-2022-07B

Comparable to OECD 403 GLP: no	03 Sprague- Dawley	Sprague- Dawley	Sprague- Dawley	Formic acid purity 98% Lot/batch: no data	7.4 mg/l (m+f) Males: 7.3 mg/l Females : 7.5 mg/l	BPD ID A6.1.3_01; FA_BPR_Ann_II_8_7_2_01
Rel. 2	m+f 10/sex/group	2.82, 6.60, 8.08, 10.6, 14.7 mg/l (analytical); 4.03, 8.50, 10.58, 13.40, 17.90 mg/l (nominal) 4 hours whole body vapour	Clinical signs (in all treated groups): Closed lids, snout swiping, discharge from the nose and eye, corrosion of nose and eyes, salivation, corneal opacity, loss of pain reflex, dyspnea, respiration sounds, flatulence, apathy, hunched posture, unsteady gait			
			Symptoms persisted until d14 after treatment (except for the 2.82 mg/l group: symptom free at d11)			
			Mortality: within 7 days post exposure (inflated lungs, dilated hearts).			
			BW at d7: dose-dependent decrease			

Formic acid is of moderate toxicity via inhalation when tested in the rat. LC_{50} (4hrs) = 7.4 mg/l = 7400 mg/m³.

Following a 4-hour *inhalation* of formic acid vapours in rats (DocIIIA6.1.3-01; FA_BPR_Ann_II_8_7_2_01: 1980), clinical signs indicated corrosive properties of the test substance, evidenced by the occurrence of corneal opacity and corrosion of the dorsal nose in some cases. Symptoms persisted until termination 14 days after the rats were exposed to 6.6 mg/l or above. Deaths occurred within 7 days. Inflated lungs and dilated hearts were seen in animals that died; gross pathology revealed no changes in animals sacrificed at termination.

Human case reports on acute 'accidental' inhalation (and dermal) exposure are rather rare. Besides local effects, severe acid skin burns and respiratory tract irritation, patients suffered and recovered rapidly from metabolic acidosis (described in section 3.3 and 3.14).

Note: the applicant has submitted a re-interpretation of the 1980 study (FA_BPR_Ann_II_8_7_2_01-new) and concludes to a higher LC₅₀ value of 7.85 mg/l. BE cannot accept this re-interpretation. The applicant's justification for this re-interpretation can be found in the PT4 specific BASF confidential Annex to the PT4 CAR, along with BE's clarification for refusal.

Value used in the	Value used in the Risk Assessment – Acute inhalation toxicity		
Value	LC ₅₀ 7.4 mg/l		
Justification for the selected value	DocIIIA6.1.3-01; FA_BPR_Ann_II_8_7_2_01: 1980 Acute inhalation toxicity of formic acid has been assessed in a study comparable to OECD 403.		

3.2.4 Overall conclusion on acute toxicity

Value used in the	Value used in the Risk Assessment – Acute systemic toxicity				
Value	See below				
Justification for the selected value	Appropriate studies are available for determining the LD ₅₀ oral and LC ₅₀ inhalation of formic acid. The acute toxic action profile of formic acid is predominantly determined by its inherent irritating/corrosive properties. The toxicity values after oral uptake and inhalation in rats suggest formic acid to be acutely harmful. The clinical signs give no evidence of specific systemic adverse effects.				
Classification according to CLP and DSD	Acute toxicity, oral, cat. 4, H302 Acute toxicity, inhalation, cat. 3, H331 Corrosive properties determine the toxicity of formic acid; additional labeling EUH071				

Value/conclusion used in the Risk Assessment – Acute local effects				
Value/conclusion	lue/conclusion LD ₅₀ oral 730 mg/kg bw (formic acid) ⁵			
	C_{50} inhalation 7.4 mg/l (formic acid)			
	LD ₅₀ dermal >2000 mg/kg bw (Na formate)			

⁵ Final LD₅₀ will be set by RAC; it is the LD₅₀ value from the adopted RAC opinion that will need to be used in biocidal product authorisation.

Justification for	Appropriate studies are available for determining the LD $_{50}$ oral and LC $_{50}$ inhalation of formic acid.
the selected value/conclusion	Due to the corrosivity of formic acid, local effects occur at all dose levels. Pathological organ lesions recorded after oral administration included hyperemia of the stomach and intestines, congestion in spleens, mottled livers and kidneys, discoloration of kidneys and pancreas. Clinical signs after inhalation, closed lids, snout swiping, discharge from the nose and eye, corrosion of nose and eyes, salivation, corneal opacity, loss of pain reflex, dyspnea, respiration sounds, flatulence, apathy, hunched posture, unsteady gait, indicated the corrosive properties of formic acid, evidenced by the occurrence of corneal opacity and corrosion of the dorsal nose. The acute dermal toxicity of formic acid was not tested and not requested because of its corrosive properties.

3.3 IRRITATION AND CORROSION

3.3.1 Skin corrosion and irritation

Summary table of animal studies on skin corrosion/irritation

Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance, Vehicle, Dose levels, Duration of exposure	Results Average score (24, 48, 72 h), observations and time point of onset, reversibility, other adverse local/systemic effects, histopathological findings	Remarks (e.g. major deviations)	Reference
n.a. corrosive substance; no <i>in vivo</i> testing acc to OECD 404 performed					
OECD 406 Buehler Test GLP: yes Rel. 1	Guinea pig Female 20/group 10 naïve controls	Formic acid purity 85.3% Induction: 7.5% formic acid in water challenge: 2% formic acid in water	Result: not sensitizing Pre-test: Min. irritant conc.: 5%; Max. non-irritant conc. 2%		BPD ID A6.1.5_01; FA_BPR_Ann_II_8_3_01

Summary table of	Summary table of human data on skin corrosion/irritation					
Type of data/ report, Reliability	Test substance	Relevant information about the study	Observations	Reference		
Case report	Formic acid conc. not known	Route of exposure: dermal 1 male, 35-year-old	Accidental splash from a container on the maxilla, chin, around mouth, thorax Clinical signs: burning pain, scialorrhae, nausea, vomiting Skin: blisters, necrotic areas Systemic: blood pressure 110/60, pulse and breathing regular, blood gases and acido-balance normal, no formic acid detected in blood and urine Result: Skin corrosion Reversible within 8 days	BPD ID A6.12.2_07a ; FA_BPR_Ann_II_8_12_2_07 Malizia et al.,1977		
Case report	Formic acid undiluted, conc. not known	Route of exposure: dermal 1 female, 15-year-old	Accidental splash on lower extremities (20% of total body surface) Clinical signs: burns, nausea, vomiting (4 hrs after exposure = start treatment) Skin: depth of burns not determined, became full-thickness. Gross edema on d2 and d3 without fever, ocular damage or pulmonary complications. Burns surgically revived on d16, grafted several times. Major scarring of burned areas persisted. Urine: brownish, hemoglobinuria Blood: pH 7.23, HCO ₃ 16.7 mmol/l, base deficit 9.5, hemolysis Patient recovered rapidly from metabolic acidosis	BPD ID A6.12.2_08 ; FA_BPR_Ann_II_8_12_2_08 Sigurdsson et al., 1983		

			Result: Skin corrosion Mild metabolic acidosis Reversibility: No: severe burns required several grafts, major scarring	
Case report	Formic acid 90%	Route of exposure: dermal 1 female, 3-year-old	Accidental splash on right torso and extremities (35% of total body surface) Clinical signs: severe distress (10 min after exposure = start treatment) Skin: full-thickness second- and third- degree burns. Required several skin grafts during several months Urine: initially dark red, hemoglobinuria resolved within few days without kidney failure Blood: pH 6.85, HCO ₃ 16.7 mmol/l, base deficit -29.7 on 100% oxygen, bicarbonate 6mEq/l; initial serum formate level 400 µg/ml, hemolysis Patient recovered rapidly from metabolic acidosis. Result: Skin corrosion Metabolic acidosis Reversibility: No: severe burns required several grafts	BPD ID A6.12.2_09 ; FA_BPR_Ann_II_8_12_2_09 Chan et al., 1995

No skin and eye irritation study reports are available on formic acid itself. Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive (according to DSD: C, R 35) in the EU (12th ATP) (see DOC-IIIA6.4.1_e / FA_BPR_Ann_II_8_2_0: Justification and A6.4.1_s/ FA_BPR_Ann_II_8_1_0: Justification).

A Buehler test was made available for assessment of skin sensitization (2002; BPD ID A6.1.5_01; FA_BPR_Ann_II_8_3_01). There was no evidence of a sensitising potential in guinea pigs using the method of Buehler. During the irritation screen performed for this study with formic acid diluted in water, the minimum irritant concentration was found to be 5% formic acid in water; the maximum non-irritant concentration was found to be 2% formic acid in water.

Sodium formate [CAS No. 141-53-7] produced no skin irritation in an acute dermal toxicity test (see section 3.2.2).

Human data: see 3.14 for a detailed discussion.

The corrosive potential of formic acid has been reported on several occasions after accidental dermal exposure in humans and documented in case reports. Malizia et al., 1977 (DocIIIA6.12.2-07; FA_BPR_Ann_II_8_12_2_07) reported blisters and necrotic areas on the skin of a man after an accidental exposure from a formic acid splash on the face and thorax. The skin around the acid-burned region was hyperaemic and oedematous. The local skin corrosion was without signs of systemic toxicity. The patient recovered after 8 days.

Sigurdsson et al., 1983 (DocIIIA6.12.2-08; FA_BPR_Ann_II_8_12_2_08) reported an agricultural accident with a girl who's legs were hit by a splash of formic acid. The patient complained of nausea and vomited on arrival at the hospital. The burns turned out to be full-thickness. Gross oedema formed on d2 and d3. The burn was surgically revised and grafted. However, major scarring of the burned area persisted. Apart from the local skin corrosion and scarring, there was absorption of formic acid, which caused metabolic acidosis with hemolysis and hemoglobinuria.

Another accidental splash exposure on the right torso and extremities of a 3-year-old girl was reported by Chan et al., 1995 (DocIIIA6.12.2-08; FA_BPR_Ann_II_8_12_2_09). The patient was in severe distress. The dermal exposure to formic acid caused severe systemic toxicity: severe metabolic acidosis with haemolysis and haemoglobinuria. Only 10 minutes after the accident medical treatment started and further dermal absorption prevented. Nevertheless, the initial serum formate level was 400 µg/ml. Full-thickness second- and third-degree burns affected 35% of the total body surface, and required several grafts and long-term treatment.

Conclusion used in	Conclusion used in the Risk Assessment – Skin irritation and corrosivity				
Value/conclusion	Formic acid is corrosive to skin				
Justification for the	No skin and eye irritation study reports are available on formic acid itself. Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive in the EU (12 th ATP)				
value/conclusion	Harmonized classification and SCLs:				
	Skin Corr 1A; H314				
	Skin Corr. 1B; H314: 10% ≤ C < 90%				
	Skin Corr. 1A; H314: C ≥ 90%				
	Skin Irrit. 2; H315: 2% ≤ C < 10%				

BPC-43-2022-07B

Data waiving	
Information requirement	Skin irritation study on formic acid
Justification	Formic acid is a corrosive substance

3.3.2 Eye irritation

Conclusion used in	Risk Assessment – Eye irritation and corrosivity
Value/conclusion	Formic acid is corrosive to the eye
Justification for the value/conclusion	No skin and eye irritation study reports are available on formic acid itself. Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive in the EU (12^{th} ATP) Harmonized classification and SCLs: Skin corr 1A, H314 Eye Irrit. 2; H319: $2\% \le C < 10\%$ Additional proposed classification and SCLs: Eye dam/irrit 1, H318 Eye dam. 1; H318: $C \ge 10\%$

Data waiving	
Information requirement	Eye irritation study on formic acid
Justification	Formic acid is a corrosive substance

3.3.3 Respiratory tract irritation

Summary table of animal studies on respiratory tract irritation

Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance Dose levels, Duration of exposure	Results <i>clinical signs, histopathology, reversibility</i>	Remarks (e.g. major deviations)	Reference
Alarie (1973), ASTM (1984). GLP: yes Rel. 1	Mouse, Swiss Webster male, 5/group	Formi®LHS Potassium formate (1:2) Purity 99.8% Lot/batch: B0298 Inhalation nebulation, nose- only 267, 568, 622, and 802 mg/m ³ (analytical) MMAD: 1.2µm 10 min acclimatisation, 30 min exposure, 20 min recovery	 RD50 = 615 mg/m³ [RD50 = 608 mg/m³ (Alarie, 1973) RD50 = 623 mg/m³ (Bos et al., 1992)] weak sensory irritant of the upper respiratory tract Asymptomatic decrease of the breathing rate at exposure time. Max. decrease towards the end. RD50 calculated from the mean of the 7 last measurements (minutes 18 to 30 of exposure). No other changes in behaviour. Breathing rate returned to normal within the recovery period. The tidal volume was not affected by treatment. Necropsy: 1 petechia noted in 1 lung lobe of 1 animal. Similar occasional findings in unexposed animals. No mortality. Reversibility: Yes, within the 20-min recovery period 		BPD ID A6.1.6_01; FA_BPR_Ann_II_8_13_2 _01 (1999)
In accordance with OECD 413 GLP: yes Rel. 1	Rat, Fischer 344/N, m + f 10/sex	Formic acid purity 95% 0, 15, 30, 61, 122, 244 mg/m ³ (nominal)	NOAEL _{local} : 30 mg/m ³		BPD ID A6.4.3_01; FA_BPR_Ann_II_8_9_2_ 03 Thompson, 1992

		6h/d, 5d/wk, 13 weeks Vapour, whole body	LOAELlocal: 61 mg/m³No clinical signs Local effects: nasal irritation, squamous metaplasia of the respiratory epithelium, olfactory degeneration, severity minimal to mild.Respiratory epithelium squamous metaplasia: $\frac{mg/m^3 \ 0 \ 15 \ 30 \ 61 \ 122 \ 244}{male \ 0 \ 0 \ 0 \ 0 \ 0 \ 6}$ Olfactory epithelium degeneration: minimal to mild $\frac{mg/m^3 \ 0 \ 15 \ 30 \ 61 \ 122 \ 244}{male \ 0 \ 0 \ 0 \ 1 \ 1 \ 9}$ female 0 0 0 0 1 1 9 female 0 0 0 0 0 5	
In accordance with OECD 413 GLP: yes Rel. 1	Mice B6C3F1 m + f 10/sex	Formic acid purity 95% 0, 15, 30, 61, 122, 244 mg/m ³ (nominal) 6h/d, 5d/wk, 13 weeks Vapour, whole body	122 mg/m ³	BPD ID A6.4.3_01; FA_BPR_Ann_II_8_9_2_ 04 Thompson, 1992

Summary table	Summary table of human data on respiratory tract irritation											
Type of data/report, Reliability	Test substance	Relevant information about the study	Observations	Reference								
Case report	Formic acid 98%	Route of exposure: inhalation 1 male, 39-year-old	Accidental spray (aerosol) onto the face with concomitant inhalation Clinical signs: facial burns (3% of total body surface), dyspnea Nasopharyngoscopy: mild supraglottic erythema, normal vocal cords Skin: second-degree burns Pulmonary function tests: Vital capacity reduced on d1, recovered largely within 14 days. Complains of dyspnea till d15 Day 1 FVC (L): 3.74 (79% predicted) FEV ₁ (L): 2.86 (73% predicted) FEV ₁ (FVC: 76.38 (92% predicted) FEF 25%-75% (I/sec): 2.32 (56% predicted) EV1/FVC: 83.09 (101% predicted) FEV ₁ (L): 3.62 (92% predicted) FEV ₁ (FVC: 83.09 (101% predicted) FEF 25%-75% (I/sec): 3.82 (92% predicted) Reversible Pulmonary dysfunction: Reactive Airway Dysfunction Syndrome Reversible within 15 days	BPD ID A6.12.2_10 ; FA_BPR_Ann_II_8_12_2_10 Yelon et al., 1996								

The airway irritating properties were studied by exposing mice to potassium diformate at concentrations of 267, 568, 622, 802 mg/m³ for a single period of 30 minutes (DocIIIA6.1.6-01; FA_BPR_Ann_II_8_13_2_01: 1999). Animals were necropsied 7 days after exposure. Inhalation of nebulized potassium diformate solutions irritated the upper airways and caused a decrease of the respiratory rate and post-inspiratory apnoea in a concentration-dependent manner. Treatment-related changes in tidal volume were not observed. The RD₅₀ values were

BPC-43-2022-07B

obtained with two calculation methods, which were in good agreement. Since the RD₅₀ values found at each concentration level did not increase or decrease with increasing concentrations, it was concluded that except sensory irritation other possible toxic actions were absent. No other effects were observed (behaviour, body weight, lung weight, macroscopic and histopathological findings: lungs, nasal cavity). The overall RD₅₀ was 615 mg/m³. This study detected clearly the irritating effects caused by potassium diformate, however without any histopathological changes. As such, this data does not allow a conclusion on a relationship between the RD₅₀ and the concentration inducing histopathological changes in the respiratory tract.

In addition, in the acute inhalation study in rats (see 3.2. Acute toxicity) clinical signs indicated the corrosive properties of formic acid, evidenced by the occurrence of corneal opacity and corrosion of the dorsal nose. Symptoms persisted until termination 14 days after the rats had been exposed to 6600 mg/m³ and above.

Further evidence of respiratory tract irritation is found in the histopathological data of the nasal cavity of the repeated dose inhalation toxicity studies performed with formic acid vapours (13-week inhalation, rat, mouse). See section 3.6. for a more detailed discussion.

Subchronic 13-week inhalation studies with formic acid vapour at concentrations of 0, 15, 30, 61, 122, 244 mg/m³ were conducted in rats and mice (DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_03 and DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_04: Thompson, 1992). Both in the rat and the mouse, the inhalation of formic acid did not result in clinical effects. In the rat, microscopic changes occurred in the respiratory and olfactory epithelium of the nose. Changes on the respiratory epithelium consisted of a minimal squamous metaplasia in which the pseudostratified, ciliated columnar cells were replaced by a flattened, non-ciliated epithelium with approximately 2 to 5 cells in thickness. Squamous metaplasia occurred most often in the respiratory epithelium that lines the most dorsal portion of the dorsal meatus in the nose's anterior section (Level I). In the olfactory epithelium, degenerative changes were minimal to mild and generally limited to the area of the dorsal meatus in the midnasal section (Level II). Degeneration was characterised by a loss of the usual orderly arrangement of the pseudostratified layer of nuclei and by a slight reduction on the normal thickness of the olfactory epithelium. There was no necrosis. No evidence was seen of metaplasia of the olfactory epithelium or atrophy of the nerve fibres in the olfactory mucosa. In the mouse, microscopic changes were limited to the degeneration of the olfactory epithelium of the nose. The minimal degeneration occurred in the dorsal portion o f the dorsal meatus in the anterior or midnasal section (Levels I and II). Degeneration was characterised by a loss of the usual orderly arrangement of the pseudostratified layer of nuclei and by a slight reduction on the normal thickness of the olfactory epithelium. In conclusion, both in the rat and the mouse respiratory tract was the major target for toxicity. The overall LOAEC_{local} = 122 mg formic acid/m³ and NOAEC_{local} = 60 mg formic acid/m³, based on histological changes in the nasal region in both the rat and the

Human data

Due to the warning effect of the pungent smell of formic acid, only few human data due to (accidental) inhalation exposure is available. Yelon et al., 1996 (DocIIIA6.12.2-10; FA_BPR_Ann_II_8_12_2_10) reported a case of an inhalation injury as a result of aerosolized formic acid from an accidental spray in the face. Apart from the skin burns, the man complained of dyspnea. Despite the oxygen therapy and nebulised metaproterenol therapy, the patient continued to complain of dyspnea, it even worsened. Pulmonary function tests within the first 12 hours were consistent with mild restrictive disease (FEV₁ of 2.86L, 73% of predicted; normal FEV₁/FVC of 76.38%); the FEF _{25%-75%} of 2.32L/sec (56% predicted) was consistent with small airway dysfunction. On day 3, the patient had improvement in dyspnea, but developed a nonproductive

Belgium

PT4

cough at the same time. The patient continued to complain of dyspnea on moderate-severe exertion. The patient recovered slowly. As all criteria were met, the patient could be diagnosed with Reactive Airway Dysfunction Syndrome (RADS).

Based on physico-chemical data, animal data and human findings, the corrosive nature of formic acid is found to affect the respiratory tract. We propose additional labelling with EUH071, 'corrosive to the respiratory tract', as the corrosive properties determine the toxicity of formic acid (CLP Regulation Annex II, point 1.2.6).

Conclusion used i	n the Risk Assessment – Respiratory tract irritation
Conclusion	formic acid is to be classified as EUH071, corrosive to the respiratory tract.
Justification for the conclusion	The corrosive properties of formic acid have been observed to affect the respiratory tract in appropriate studies relating to inhalation toxicity and in a human case report.

3.3.4 Overall conclusion on corrosion and irritation

Conclusion used i	Conclusion used in the Risk Assessment – Corrosion and irritation								
Value	Formic acid is corrosive to skin and eye, and to the respiratory tract.								
Justification for the selected	No skin and eye irritation study reports are available on formic acid itself. Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive in the EU (12 th ATP)								
value	The corrosive properties of formic acid were evidenced by numerous human case reports. In addition, based on physico-chemical data, animal data (acute inhalation toxicity, respiratory irritation test, repeated inhalation toxicity) and human findings, formic acid is observed to affect the respiratory tract. For NOAEC _{local} see 13-week inhalation study, rat, mouse; section 3.6.3 below). RD50 = 615 mg potassium diformate/m ³ .								
Classification	Harmonized classification and SCLs:								
-	Skin corr 1A, H314								
	Skin Corr. 1B; H314: 10% ≤ C < 90%								
Justification for the selected value No skin and eye irritation study reports are available on formic acid itself. Due to the (strong acid), the substance has been classified as corrosive in the EU (12 th ATP) The corrosive properties of formic acid were evidenced by numerous human case rep physico-chemical data, animal data (acute inhalation toxicity, respiratory irritation te and human findings, formic acid is observed to affect the respiratory tract. For NOAE study, rat, mouse; section 3.6.3 below). RD50 = 615 mg potassium diformate/m ³ . Classification according to CLP and DSD Harmonized classification and SCLs: Skin corr 1A, H314	Skin Corr. 1A; H314: C ≥ 90%								
	Skin Irrit. 2; H315: 2% ≤ C < 10%								
	Eye Irrit. 2; H319: 2% ≤ C < 10%								
	Additional proposed classification and SCLs:								

Eye dam/irrit 1, H318
Eye dam. 1; H318: C ≥ 10%
EUH071

3.4 SENSITISATION

3.4.1 Skin sensitisation

Summary table of a	nimal studies o	n skin sensitisatio	on		
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance, Vehicle, Dose levels, Route of exposure (topical/intrader mal, if relevant), Duration of exposure	Results (EC3-value or amount of sensitised animals at induction dose)	Remarks (e.g. major deviations)	Reference
OECD 406 Buehler Test GLP: yes Rel. 1 Inductions, topically on d0, d7, d14; Challenge, topically on d28 Scoring 1 on d29 Scoring 2 on d30 Evaluation according to Magnusson and Kligman: 0=no visible change 1=dicrete or patchy erythema 2= moderate and	Guinea pig Female 20/group 10 naïve controls	Formic acid purity 85.3% Induction: 7.5% formic acid in water challenge: 2% formic acid in water	Result: not sensitizing Scoring after 24h: naïve control: 0/10 formic acid: 0/20 pos. control*: 13/20 Scoring after 48h: naïve control: 0/10 formic acid: 0/20 pos. control*: 14/20 Pre-test: Min. irritant conc.: 5%; Max. non-irritant conc. 2% Observations after induction 1, 2, 3: Discrete to moderate erythema in 20/20 test animals. Mean score 1.65, 1.85,		BPD ID A6.1.5_01; FA_BPR_Ann_II_8_3_0 1 2002.

confluent erythema 3= intense erythema and swelling			11/20 *Pos 24h:), 9/20	tes	t ar	im	als,	g in 10/ respecti oric data	vely.	
OECD 406 GPMT GLP: yes Rel. 1	Guinea pig Female 20/group 10 naïve controls	Formi®LHS Potassium formate (1:2) Intradermal induction: 0.5% m/v in purified		t: not : ences r Con- centr a-tion	naïve		ntr		<u>%</u> anima Is with incide n-ces		Report number: 1516/22-1032, 1998 BPD ID A6.1.5_02; FA_BPR_Ann_II_8_3_0 3
		water and/or adjuvant	e		0	1	2	≥ 3	≥ 1		SIAP (2008)
		Topical induction: 15%	24h	10%	8	2	0	0	20%		
		m/m in Vaseline	48h	10%	9	1	0	0	10%		
		Challenge	24h	5%	10	0	0	0	0%		
		application: 10 and 5% m/m in	48h	5%	10	0	0	0	0%		
		vaseline	24h	0%	10	0	0	0	0%		
			48h Incide Rea - ding time	0% ences t Con- centra tion		gro Incid	· ·	-	0% anima Is with incide n-ces ≥ 1	als with	

⁶ Data interpretation: The incidences of the test animals were compared to the naïve control animals at the same concentration and reading time. If the challenge response of a test animal was less marked or the same as the maximum reaction apparent among naïve control animals at the same concentration and reading time, those animals were not counted as animals with reactions. Furthermore, the percentage of test animals with reactions was reduced by the percentage of test animals with reactions treated with Vaseline alone.

1			-		_		
			0	1 2	2 ≥ 3		
	24h	10%	14	6 (0 0	30%	0%
	48h	10%	19	1 (0 0	5%	0%
	24h	5%	16	4 (0 0	20%	10%
	48h	5%	20	0 (0 0	0%	0%
	24h	0%	18	2 (0 0	10%	-
	48h	0%	20	0 (0 0	0%	-
	- In - To Max. Obser Well-o inject Adjuv anima Obser Slight anima Formi No er applio <u>Positi</u> thiazo 03-04	rritant co traderma pical app non-irrita <u>tvation af</u> defined en ion sites vant (FCA)	l inject lication ant con ter intr rythem with Fr) for bo ter top a was a ng app Vaselir vas app vas app vas app s in the), histo /9 posi	a: 1! ade a w eun oth t ical ical ical ical ica ical ica ica ica ica ica ica ica ica ica ica	5% LO% arma as d's cest ind are tior nt a pontr pto cor c, 2	6 al inject noted a Complet and co luction: nut in te n of 159 at the t rol anim benzo- ntrol da	nt ete ontrol est % opical nals.

	08-09/1997: 6/10 positive, 2/10 inconclusive, 2/10 negative	
	inconclusive, 2/10 negative	

No guinea-pig maximisation test on the active substance, formic acid, was made available by the applicant. Instead, a Buehler test was made available. Nevertheless, the conduct of an additional Maximisation test (GPMT) is scientifically not justified. A negative GPMT result was obtained with potassium diformate, that liberates formate and formic acid in equimolar quantities in aqueous solution. This substance was included in the "Formic acid and formates" category that was treated in the OECD/ICCA-HPV program, and the negative result can be read across to formic acid. The final SIAP (2008) is publicly available at: http://webnet.oecd.org/Hpv/UI/handler.axd?id=81d8d2fe-5244-4699-93ab-c501433db94c. In the concept of skin sensitisation it is generally assumed that protein-hapten conjugates need to be formed by covalent binding in order to be recognised by the immune system. Therefore, a compound which is able to cause contact allergy must have electrophilic properties, either by itself or after metabolic transformation. This concept is generally accepted and provides the mechanistic basis for Structure-activity-relations (SAR) for the skin sensitisation endpoint. Both formic acid and formate lack electrophilic properties, and are, therefore, considered to lack sensitising properties. In fact formic acid is not contained in publicly available structural alert lists, and acknowledged recently available QSAR models (CAESAR, OASIS) predict that formic acid is not a skin sensitizer. The negative result of the Buehler test with formic acid in Guinea pigs fits into the described concept. Additionally, no case reports of skin sensitisation following skin contact of workers or of the general public were retrieved. Case reports of accidental dermal exposure to formic acid also do not indicate that skin sensitisation test is not allowed because formic acid is corrosive to the skin. The RMS BE accepted the justification given by the applicant.

There was no evidence of a sensitising potential in guinea pigs using the method of Buehler. During the irritation screen with formic acid diluted in water, the minimum irritant concentration was found to be 5% formic acid in water; the maximum non-irritant concentration was found to be 2% formic acid in water. The inductions performed with 7.5% formic acid caused discrete or patchy erythema to intense erythema, swelling and eczematoid skin changes. No sensitisation responses were elicited by formic acid: no visual changes (score=0) were observed in both the naïve control and test animals. In contrast, the positive control (not included, but routinely conducted twice a year in the laboratory) showed a clear sensitising effect, which confirmed the validity of the study.

A GMPT was performed with potassium diformate (**1998**; BPD ID A6.1.5_02; FA_BPR_Ann_II_8_3_03/SIAP 2008). In the pre-test a topical minimal irritation concentration of 15% and a maximal non-irritant concentration of 10% were established. For the intradermal injection 0.5% with and without Freund's Complete Adjuvant (FCA) were used. Well defined erythema was noted for both test and control animals after intradermal injections with FCA. No erythema was apparent in test animals receiving the test substance without FCA and in control animals receiving purified water alone. During the induction slight erythema was apparent in test animals following topical application of 15% potassium diformate in Vaseline. No erythema was apparent at the topical application sites in the control animals. During the challenge application light erythema was noted in some control and test animals treated with the higher challenge concentration (10%). In addition, four test animals showed slight erythema at the lower challenge application site although two of these animals also had a slight response to application of the vehicle Vaseline. Those two animals were therefore not considered in the assessment of animals with reactions. The reactions had generally resolved by the 48-hour assessment, and it was noted that the dermal reactions seen in the test group animals were no more persistent or

BPC-43-2022-07B

marked than those seen among the controls. In conclusion, it can be stated that no evidence of skin sensitising properties of potassium diformate was observed.

In addition, there is no data available (human data e.g. market surveillance data, animal data, open literature) which may be indicative of the potential of formic acid to cause skin sensitisation and sensitisation by inhalation in humans.

Conclusion used in Risk Assessment – Skin sensitisation		
Value/conclusion	Formic acid does not fulfill the criteria of the CLP regulation to be classified as a skin sensitiser	
Justification for the value/conclusion	Skin sensitization (Buehler test) by formic acid has been assessed in an OECD 406 study (Buehler test). The results do not trigger a classification as skin sensitizer.	

Data waiving	
Information requirement	Local Lymph Node Assay (LLNA),
Justification	LLNA not available as FA is corrosive to skin: Step 2, Point 8.3, Title 1, Annex II of EU 528/2012 indicates in vivo testing (preferably with the LLNA) does not need to be conducted if the substance is classified for corrosivity.

3.4.2 Respiratory sensitisation

Conclusion used in the Risk Assessment – Respiratory sensitisation		
Value/conclusion	There is no indication that formic acid would be a respiratory sensitizer.	
Justification for the value/conclusion	No data are available (human data e.g. market surveillance data, animal data, open literature) which may be indicative of the potential of formic acid to cause sensitisation by inhalation in humans. No respiratory sensitisation was seen with formic acid in two subchronic rat and mouse inhalation studies (see 3.6.3, Thompson 1992). Hence, there is no indication that formic acid would be a respiratory sensitizer.	

3.4.3 Overall conclusion on sensitisation

Conclusion used in t	Conclusion used in the Risk Assessment – Sensitisation		
Value	Formic acid is not a skin sensitizer. There is no indication that formic acid would be a respiratory sensitizer.		
Justification for the selected value	Classification as a sensitizer is not triggered by appropriate tests. Studies in guinea pigs (method of Buehler) showed that there is no evidence that formic acid has a potential to induce skin sensitisation. In addition, there are no data available (human data including market surveillance, animal studies, open literature) that may be indicative of the potential of formic acid to cause skin sensitisation and sensitisation by inhalation in humans.		
Classification according to CLP and DSD	none		

3.5 SHORT TERM REPEATED DOSE TOXICITY

3.5.1 Short-term oral toxicity

No data are available on short-term oral toxicity.

Value used in the Risk Assessment – Short-term oral toxicity		
Value/conclusion	The short-term toxicity of formic acid has not been investigated.	
Justification for the value/conclusion	The additional conduct of a study with repeated administration via the oral, dermal, or inhalation route was not considered to be necessary.	

Data waiving	
Information requirement	short-term oral toxicity of formic acid

BPC-43-2022-07B

According to the Guidance on the BPR VIII Human Health – Part A Information Requirements (ECHA, 2014), no studies are required because subchronic rodent toxicity studies are available for the oral route (rat, potassium diformate). The use of
potassium diformate is justified because it is transformed into formic acid (DocIIIA6.2-01; FA_BPR_Ann_II_8_8_01:

3.5.2 Short-term dermal toxicity

No data are available on short-term dermal toxicity.

Value used in the Risk Assessment – Short-term dermal toxicity		
Value/conclusion	The short-term toxicity of formic acid has not been investigated.	
Justification for the value/conclusion	The additional conduct of a study with repeated administration via the oral, dermal, or inhalation route was not considered to be necessary.	

Data waiving	
Information requirement	short-term dermal toxicity of formic acid
Justification	Dermal repeated dose studies were not conducted for reasons of animal welfare, because formic acid and potassium diformate are both corrosive to the skin. Moreover, only limited repeated exposure is expected because of the corrosivity to the skin.

3.5.3 Short-term inhalation toxicity

No data are available on short-term inhalation toxicity.

Value used in Risk Assessment – Short-term inhalation toxicity		
Value/conclusion	The short-term toxicity of formic acid has not been investigated.	

BPC-43-2022-07B

Justification for the	The additional conduct of a study with repeated administration via the oral, dermal, or inhalation route was not considered
value/conclusion	to be necessary.

Data waiving	
Information requirement	short-term inhalation toxicity of formic acid
Justification	According to the Guidance on the BPR VIII Human Health – Part A Information Requirements (ECHA, 2014), no studies are required because subchronic rodent toxicity studies are available for the inhalation route of exposure (rat and mouse, formic acid).

3.5.4 Overall conclusion on short-term repeated dose toxicity

Value used in the Ris	Value used in the Risk Assessment – Short-term repeated dose systemic toxicity				
Value	The short-term toxicity of formic acid has not been investigated.				
Justification for the selected value					
	According to the Guidance on the BPR VIII Human Health – Part A Information Requirements (ECHA, 2014), no studies are required because subchronic rodent toxicity studies are available for the oral route (rat, potassium diformate) and the inhalation route of exposure (rat and mouse, formic acid). The use of potassium diformate is justified because it is transformed into formic acid (DocIIIA6.2-01: 1997). Dermal repeated dose studies were not conducted for reasons of animal welfare, because formic acid and potassium diformate are both corrosive to the skin. Moreover, only limited repeated exposure is expected because of the corrosivity to the skin.				
Classification according to CLP and DSD	n.a.				

BPC-43-2022-07B

Value/conclusion use	Value/conclusion used in the Risk Assessment – Short-term repeated dose local effects				
Value/conclusion	The short-term toxicity of formic acid has not been investigated.				
Justification for the selected value/conclusion	The additional conduct of a study with repeated administration via the oral, dermal, or inhalation route was not considered to be necessary. According to the Guidance on the BPR VIII Human Health – Part A Information Requirements (ECHA, 2014), no studies are required because subchronic rodent toxicity studies are available for the oral route (rat, potassium diformate) and the inhalation route of exposure (rat and mouse, formic acid). The use of potassium diformate is justified because it is transformed into formic acid (DocIIIA6.2-01: 1997). Dermal repeated dose studies were not conducted for reasons of animal welfare, because formic acid and potassium diformate are both corrosive to the skin. Moreover, only limited repeated exposure is expected because of the corrosivity to the skin.				
Classification according to CLP and DSD	n.a.				

3.6 SUB-CHRONIC REPEATED DOSE TOXICITY

3.6.1 Sub-chronic oral toxicity

Summary	Summary table of oral sub-chronic animal studies (usually 90-day studies)					
Guideline, GLP	Sex, No/ group	Test substance Dose levels, Route of exposure (gavage, in diet, other), Duration of 	LOAEL		Remarks (e.g. major deviations)	Reference

OECD 408 GLP: yes Rel. 1	Rat, CrI:CDBR m + f 10/sex/group 10/sex/satellite group	6, 666, 1266, 3000 mg Formi/kg bw/d (nominal) = 0, 420, 840, 2100 mg formate/kg bw/d Oral, feed	<420 mg/kg bw/d LOAEL _{Local} : as formate:	No clinical signs No active substance related mortality. Local effects: gastric irritation = thickening of the stomach, usually involving the limiting ridge, dose- related increase in severity and incidence of squamous cell hyperplasia in the stomach (m + f) partial reversibility during the treatment-free period Systemic or target organ toxicity: not overt Bw: dose-dependent decrease in bw (males), decrease in bw at high dose (females); in the recovery period, the bw gain was in parallel for the high dose and control group, but no increase in body weight gain compared to the control. Food intake: only slight but dose- dependent decrease in food consumption (not stat. sign.), in recovery period comparable food intake for all groups. Haematology at week 13:		BPD ID A6.4.1_01 FA_BPR_Ann_II_8_9_2_01 1998
--------------------------------	---	--	---	--	--	--

Haematology at week 13:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Clinical chemistry at week 13:
MalesFemalesLow Int. High Low Int. HighAST \uparrow (trend)AP \uparrow (trend)Tot bilirTot prot \downarrow KCa \downarrow Creatinine \downarrow Urea \uparrow Tot Chol \uparrow Globulin \downarrow A/G ratio
Clinical chemistry at week 17:
$\begin{array}{c c} Males & Females \\ \hline Low Int. High Low Int. High \\ \hline AST & \uparrow \\ AP & \uparrow \\ Glucose & \downarrow & \downarrow \\ \end{array}$
all changes considered of no biological relevance, no dose- response and no microscopic changes observed.

				Absorption study (high-dose): formate plasma levels morning: 90 µg (f)-160 µg (m) formate/ml afternoon: < LOD rapid absorption and metabolism, no accumulation	
No guideline, but following scientific standards GLP: yes Rel. 2	Pig, Large White x Landrace hybrid breed f 6/group	20642-05-1] purity 98.7% 0, 1.2%, 3.0%, 6.0% in the diet	< 149 mg/kg bw/d LOAEL _{Local} : as formate: 149 mg/kg bw/d NOAEL _{Systemic} : as formate: 760 mg/kg bw/d	No clinical signs No active substance related mortality. Local effects: gastric irritation = forestomach gastritis and erosion/ulcer in approx. 30 to 60% of the treated animals. No systemic or target organ toxicity: No effect on bw (gain) and food intake. Haematology: <u>Week 15</u> Weaning <u>Low Int High Low Int High</u> RBC* dose-dependent trend↓ Hb* dose-dependent trend↓ PCV dose-dependent trend↓ * stat. sign. at week 15	BPD ID A6.4.1_02 FA_BPR_Ann_II_8_9_2_02 2004

RO	laium
	uuuu

BPC-43-2022-07B

farrowing, and until day 26 post partum continuous, 7 d/week	Clinical chemistry: Week 15 Weaning Low Int. High Low Int. High AP ↓ K* ↑ ↑ * dose-dependent.	
	Reproduction parameters not affected. Development of piglets not affected at birth and until weaning.	

No human data are available on subchronic oral toxicity.

The 90 day oral toxicity of potassium diformate was studied in rats (DocIIIA6.4.1-01; FA_BPR_Ann_II_8_9_2_01: 1998). The formic acid salt, potassium diformate ("Formi"), was used as test material as it allowed to achieve high dose levels of the formate ion with the feed due to less irritating potency than formic acid itself. The systemic bioavailability of the test substance was considerable as reflected in the increased formate plasma levels of approx. 90 to 160 mg formate/l that were regularly found after the nocturnal feed intake of the rats in the high-dose group over the entire feeding period. The formate salt failed to produce any detectable target-organ toxicity. Local irritation effects in the stomach caused a dose-related thickening of the stomach at all dose levels, which was confirmed to be squamous cell hyperplasia. After the 4 week recovery period, the squamous cell hyperplasia in the forestomach subsided and was largely reversible. No overt systemic toxicity was observed: There was a dose-dependent decrease in bw gain in males and a decrease in bw gain in the high dose females. However, the RMS is not convinced that the slight dose-related reduction in feed intake in males is entirely responsible for the significant decrease in bw gain decrease at the high dose and control groups. In addition, is the observed systemic effect (dose-dependent bw gain decrease in males and bw gain decrease at the highest dose in females) secondary to the corrosive local GI tract effect? Using a precautionary approach the LOAELsystemic according to the RMS is 2100 mg formate/kg bw/d, based on decreased bw gain in males and females. The NOAELsystemic is 840 mg formate/kg bw/d, based on decreased bw gain in males and females. The NOAELsystemic is 840 mg formate/kg bw/d, based on decreased bw gain in males and females. The NOAELsystemic is 840 mg formate/kg bw/d, based on decreased bw gain in males and females. The stomate/kg bw/d, based on decrease in the stomate/kg bw/d, based on histological changes in the stomatch.

The pig oral feed study was conducted to assess the safety of potassium diformate at dose levels of up to five times the recommended dose in the reproducing pig and its offspring (DocIIIA6.4.1-02; FA_BPR_Ann_II_8_9_2_02: 2004). No guideline was followed, but the test design obeyed scientific standards. The study provided additional toxicity data on a species that has a more limited metabolism capability to dispose of formate than humans. Therefore, the pig appears to be a more appropriate test species than the rat: any symptomatology possibly

BPC-43-2022-07B

related to formate in pig will have significance for the extrapolation to human beings. Potassium diformate ("Formi") was used as test material at nominal concentrations of 0%, 1.2%, 3%, and 6% in the feed. Dose levels of 0, 92, 226, and 437 mg formate/kg bw/d were achieved during 114 days of gestation, dose levels of 0, 149, 359, and 760 mg/kg bw/d during lactation until day 26 post-partum. There were no mortalities or clinical signs that were treatment-related. There was no indication of visual problems in any of the animals. Haematology, clinical chemistry, urinalysis, necropsy and histopathology did not indicate any systemic toxicity. At week 15 and weaning time points, there was a trend towards lowered red blood cell counts (RBC), hemoglobin concentration (Hb), white blood cell count, packed cell volume and haemoglobin. Plasma potassium levels were dose-dependently increased at weak 15 and at weaning (p < 0.05). There was a clear trend in sodium concentration decrease with increasing dose at the Week 15 and weaning time points, and there was also a trend for potassium concentration to increase with dose at the same time points. Likewise, there was a clear trend towards a higher pH with increased dose levels. The increased potassium uptake was considered to be related with the observed effects, rather than with formic acid. Organ weights were not recorded, but the appearance was normal. Histopathology revealed local irritating effects, as evidenced by forestomach gastritis and erosion/ulcer in approx. 30 to 60 % of the treated animals. The reproduction parameters of the pig were not changed by the treatment. The development of the piglets was also unaffected at birth and up to day 26 post-partum. The NOAEL_{systemic} is 760 mg formate/kg bw/d, the highest dose tested, based on the lack of any systemic effects. LOAEL_{local} = 149 mg formate/kg bw/d and NOAEL_{local} < 149 mg formate/kg bw/d, based on histological changes in the stomach.

Value used in Risk As	sessment – Sub-chronic oral toxicity				
Value/conclusion	90 day oral toxicity, potassium diformate, rats:				
	LOAEL _{systemic} 2100 mg formate/kg bw/d, NOAEL _{systemic} 840 mg formate/kg bw/d.				
	LOAEL _{local} 420 mg formate/kg bw/d, NOAEL _{local} < 420 mg formate/kg bw/d				
	140 day oral oxicity, potassium diformate, pig:				
LOAEL _{systemic} >760 mg formate/kg bw/d, NOAEL _{systemic} 760 mg formate/kg bw/d,					
	LOAEL _{local} 149 mg formate/kg bw/d, NOAEL _{local} < 149 mg formate/kg bw/d				
Justification for the	BPD ID A6.4.1_01, FA_BPR_Ann_II_8_9_2_01:				
value/conclusion	Subchronic oral toxicity of potassium diformate in the rat has been assessed in a study according to OECD 408.				
	NOAEL _{systemic} = 840 mg formate/kg bw/d, based on decreased bw gain at 2100 mg formate/ kg bw/d; NOAEL _{local} < 420 mg formate/kg bw/d, based on histological changes in the stomach.				
	BPD ID A6.4.1_02, FA_BPR_Ann_II_8_9_2_02:				
	Subchronic oral toxicity of potassium diformate in the pig has been assessed in a non-guideline study following scientific standards.				

BPC-43-2022-07B

NOAEL _{systemic} = 760 mg formate/kg bw/d, the highest dose tested, based on the lack of any systemic effects; NOAEL _{local} <
149 mg formate/kg bw/d, based on histological changes in the stomach.

Data waiving	
Information requirement	Subchronic oral toxicity study on formic acid
Justification	Subchronic toxicity studies are available for the oral route using potassium diformate. The use of potassium diformate is justified because it is transformed into formic acid (DocIIIA6.2-01; FA_BPR_Ann_II_8_8_01: 1997).

3.6.2 Sub-chronic dermal toxicity

No data are available on subchronic dermal toxicity.

Value used in Risk Assessment – Sub-chronic dermal toxicity			
Value/conclusion	n.a.		
Justification for the value/conclusion	n.a.		

Data waiving	
Information requirement	Subchronic dermal toxicity study on formic acid
Justification	Subchronic dermal toxicity studies were not conducted for reasons of animal welfare, because formic acid and potassium diformate are both corrosive to the skin. In addition, formate salts differ in their local effects on skin and presumably also in the absorption characteristics compared to the acid, and therefore subchronic studies using formate were not considered to represent an adequate alternative to formic acid testing. Moreover, only limited repeated exposure is expected because of the corrosivity to the skin and because of the measures taken to prevent skin contact with the corrosive material.

3.6.3 Sub-chronic inhalation toxicity

Summary ta	Summary table of inhalatory sub-chronic animal studies (usually 90-day studies)					
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/ group	Test substance, form (gas, vapour, dust, mist) and particle size (MMAD), Actual and nominal concentration, Type of administration (nose only / whole body/ head only), Duration of exposure	NOAEL, LOAEL	Results	Remarks (e.g. major deviations)	Reference
In accordance with OECD 413 GLP: yes Rel. 1	Rat, Fischer 344/N, m + f 10/sex	Formic acid purity 95% 0, 15, 30, 61, 122, 244 mg/m ³ (nominal) Vapour, whole body 6h/d, 5d/wk 13 wk	NOAEL _{Local} : 30 mg/m ³ LOAEL _{Local} : 61 mg/m ³ NOAEL _{Systemic} : 244 mg/m ³ (highest dose tested) LOAEL _{Systemic} : Not achieved	No clinical signs No active substance related mortality. Local effects: nasal irritation, squamous metaplasia of the respiratory epithelium, olfactory degeneration, severity minimal to mild. Respiratory epithelium squamous metaplasia: $mg/m^3 \ 0 \ 15 \ 30 \ 61 \ 122 \ 244$ male 0 0 0 0 0 0 9 female 0 0 0 0 0 0 6 Olfactory epithelium degeneration: minimal to mild		BPD ID A6.4.3_01 FA_BPR_Ann_II_8 _9_2_03 Thompson, 1992

mg/m^3 0 15 30 61 122 244
male 0 0 1 1 9 female 0 0 0 0 5
No systemic toxic effects:
No effect on body weight (gain) in
males and females. Liver weight (abs.
and rel.) increased for all treated
groups in males, no effects in females.
Relative lung weights decreased for all
treated males, absolute lung weights
only decreased for the 122 and 244
mg/m ³ males. Lung weights (abs. and
rel.) decreased for all treated groups in
females. Decrease in lung weight was
without dose-response relationship
and histopathological manifestations.
Haematological and clinical chemistry
changes were mild and generally
unremarkable, and of no biological
relevance:
Slight neutropenia in males and
females of all exposure levels after
week 13: Statistically significant
decreases in the number of segmented
neutrophils (p<0.01)
Slight leukocytosis in males and
females at 64 and 128 ppm, in females
also at 8 ppm, after 3 days (p<0.01)
Slight decreases in urea nitrogen (UN),
albumin, globulin, total protein, and
creatinine in males and females at day
3 at 64 and 128 ppm, protein
parameters only statistically significant
for females (p<0.01). A significant

				decrease in UN also in the female 16- and 32-ppm groups ($p < 0.01$). These changes were attributed to reduced feed intake during the first exposure period according to authors. Increase in sorbitol dehydrogenase in males of all groups exposed to ≥ 16 ppm after 3 days ($p < 0.01$). No changes for other liver-specific indicators. Increase in alkaline phosphatase in males at 128 ppm after 3 days, while decreases in females at 64 and 128 ppm at the same time point, and again increases in both top-dosed sexes after 13 weeks ($p < 0.01$). Decrease in creatine kinase in males from 16 to 128 ppm after 3 days ($p < 0.01$). Decrease in amylase in females at 64 and 128 ppm after 3 and 23 days. Reproductive parameters: No effects on sperm motility, density or testicular or epidydimal weights, no changes in	
In	Mice	Formic acid	NOAEL _{Local} :	or epidydimal weights, no changes in the length of the oestrous cycle. No clinical signs	BPD ID A6.4.3_01
accordance with OECD 413 GLP: yes Rel. 1	B6C3F1 m + f 10/sex	purity 95% 0, 15, 30, 61, 122, 244 mg/m ³ (nominal) Vapour, whole body	61 mg/m ³ LOAEL _{Local} : 122 mg/m ³ NOAEL _{Systemic} : 122 mg/m ³	No active substance related mortality. Local effects: nasal irritation, olfactory degeneration, severity minimal but dose-related. Olfactory epithelium degeneration: minimal	FA_BPR_Ann_II_8 _9_2_04 Thompson, 1992

6h/d, 5d/wk 13 wk	LOAEL _{Systemic} : 244 mg/m ³	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Systemic toxic effects: Decrease in body weight gain in males and females at 244 mg/m ³ (male terminal bw = 84% of the control, female terminal bw = 80% of the control). Relative liver weight increased for the	
		61, 122, 244 mg/m ³ groups in males, and the 244 mg/m ³ group in females. Relative kidney weights were increased in females in the 61, 122, and 244 mg/m ³ groups. These changes were without histopathological manifestations.	
		Reproductive parameters: No effects on sperm motility, density or testicular or epidydimal weights, no changes in the length of the oestrous cycle.	

No human data are available on subchronic inhalation toxicity.

Subchronic 13-week inhalation studies with formic acid vapour at concentrations of 0, 15, 30, 61, 122, 244 mg/m³ were conducted in rats and mice (DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_03 and DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_04: Thompson, 1992).

In the rat, the inhalation of formic acid did not result in clinical effects. All animals survived, and no effect on the body weight was observed. Changes in haematological and clinical chemistry changes measured at 3 time points (day 3, day 23, and at 13 weeks) were few and generally unremarkable. There were no gross lesions noted at necropsy. Absolute liver weights were increased in male rats in all exposure groups and relative liver weights were increased in males exposed to 61, 122, 244 mg/m³ formic acid. Absolute and relative lung weights were decreased in females in all treated groups. In males, relative lung weights were decreased for all treatment groups, absolute lung weights were decreased for the 122 and 244 mg/m³ groups. Microscopic changes occurred in the respiratory and olfactory epithelium of the nose. Changes on the respiratory epithelium consisted of minimal squamous metaplasia in which the pseudostratified, ciliated columnar cells were replaced by a

BPC-43-2022-07B

flattened, non-ciliated epithelium of approximately 2 to 5 cells in thickness. Squamous metaplasia occurred most often in the respiratory epithelium that lines the most dorsal portion of the dorsal meatus in the nose's anterior section (Level I). In the olfactory epithelium, degenerative changes were minimal to mild and generally limited to the area of the dorsal meatus in the mid-nasal section (Level II). Degeneration was characterised by a loss of the usual orderly arrangement of the pseudostratified layer of nuclei and by a slight reduction on the normal thickness of the olfactory epithelium. There was no necrosis. No evidence was seen of metaplasia of the olfactory epithelium or atrophy of the nerve fibres in the olfactory mucosa. There were no effects on measures of sperm motility, density, or testicular or epidydimal weights, and no changes in the length of the estrous cycle. In conclusion, the upper respiratory tract was the major target for toxicity in rats. There was no evidence of systemic toxicity. The NOAEC_{systemic} is 244 mg formic acid/m³, the highest dose tested, based on the lack of any systemic effects. LOAEC_{local} = 61 mg formic acid/m³ and NOAEC_{local} = 30 mg formic acid/m³, based on histological changes in the nasal region.

In the mouse, the inhalation of formic acid did not result in clinical effects. There was no mortality associated with the exposure to formic acid. Body weight gain was decreased for both males and females for the 244 mg/m³ group, and for the females for the 122 mg/m³ group. Relative liver weights were increased in males and females in the 122 and 244 mg/m³ groups and relative kidney weights were increased in females in the 61, 122, and 244 mg/m³ groups. There were no gross lesions noted at necropsy. Microscopic changes were limited to the degeneration of the olfactory epithelium of the nose in mice from the 122 mg/m³ and 244 mg/m³ formic acid groups. The minimal degeneration occurred in the dorsal portion of the dorsal meatus in the anterior or mid-nasal section (Levels I and II). Degeneration was characterised by a loss of the usual orderly arrangement of the pseudostratified layer of nuclei and by a slight reduction on the normal thickness of the olfactory epithelium. Blood analysis (haematology, clinical chemistry, urinalysis) was not documented. There were no effects on the reproductive parameters evaluated. In conclusion, also in the mouse the upper respiratory tract was the major target for toxicity. LOAEC_{systemic} is 244 mg formic acid/m³, NOAEC_{systemic} is 122 mg formic acid/m³, based on the reduced body weight gain observed at 244 mg/m³. LOAEC_{local} = 122 mg formic acid/m³ and NOAEC_{local} = 61 mg formic acid/m³, based on histological changes in the nasal region.

Effects on the respiratory and olfactory epithelium at 13 weeks consisted of squamous metaplasia (minimal, rats) and degeneration (minimal, rats and mice), respectively. Based on the findings in the 13-week studies the overall NOAEC_{local} for microscopic lesions in the rats and mice is considered 60 mg/m³.

Note : The applicant does not agree with the estimated NOAEC for local effects in rats and proposes a local NOAEC in rats of 122 mg formic acid/m³ and a LOAEC of 244 mg formic acid/m³. However, eCA BE is adhering to the NOAEC_{local, rat} of 30 mg formic acid/m³. The applicant's justification for this re-interpretation can be found in the PT4 specific BASF confidential Annex to the PT4 CAR, along with BE's clarification for refusal.

Value used in Risk Assessment – Sub-chronic inhalation toxicity

BPC-43-2022-07B

Value/conclusion	13-week inhalation toxicity, formic acid, rat:				
	LOAEC _{systemic} not achieved, NOAEC _{systemic} 244 mg formic acid/m ³				
	LOAEC _{local} 61 mg formic acid/m ³ , NOAEC _{local} 30 mg formic acid/m ³				
	13-week inhalation toxicity, formic acid, mouse:				
	LOAEC _{systemic} 244 mg formic acid/m ³ , NOAEC _{systemic} 122 mg formic acid/m ³				
LOAEC _{local} 122 mg formic acid/m ³ , NOAEC _{local} 61 mg formic acid/m ³					
	overall NOAEC _{local} for microscopic lesions in the rats and mice is considered 60 mg/m ³				
Justification for the	DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_03 ; DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_04: Thompson, 1992				
value/conclusion	Subchronic inhalation toxicity of formic acid in the rat and mouse has been assessed in a study in accordance with OECD 413.				
	The upper respiratory tract was the major target organ: minimal to mild squamous metaplasia of the respiratory epithelium and minimal degeneration of the olfactory epithelium. In addition, a decrease in body weight gain was observed at the highest dose level in mice. NOAEC _{systemic} = 122 mg formic acid/m ³ , based on the reduced bodyweight gain observed at 244 mg/m ³ in the mouse. The overall NOAEC _{local} = 60 mg formic acid/m ³ , based on histopathological changes in the nasal region of both rats and mice observed at 122 mg/m ³ .				

3.6.4 Overall conclusion on sub-chronic repeated dose toxicity

Value used in the Risk Assessment – Sub-chronic repeated dose systemic toxicity						
Value	medium-term oral toxicity :					
	Rat: NOAEL _{systemic} = 840 mg formate/kg bw/d					
	Pig: NOAEL _{systemic} = 760 mg formate/kg bw/d					
	Medium-term inhalation toxicity:					
	NOAEC _{systemic} = 122 mg formic acid/m ³					
Justification for the selected value	The medium-term oral toxicity of formic acid, administered as potassium diformate in the feed, was studied in the rat (90 days) and the pig (140 days). Local irritation effects in the stomach caused a dose-related thickening of the stomach					

	at all dose levels, which was confirmed to be squamous cell hyperplasia of the stomach and gastrointestinal tract, and was largely reversible. High doses may produce adverse effects, such as decrease in body weight gain (rat), which might be due to the inherent irritating potential. In the rat, the NOAEL _{systemic} = 840 mg formate/kg bw/d, based on decreased bw gain at 2100 mg formate/ kg bw/d; in the pig, the NOAEL _{systemic} = 760 mg formate/kg bw/d, the highest dose tested, based on the lack of any systemic effects.
	Medium-term inhalation toxicity was studied in rats and mice exposed to formic acid vapours for 13 weeks. The upper respiratory tract was the major target organ: minimal to mild squamous metaplasia of the respiratory epithelium and minimal degeneration of the olfactory epithelium. In addition, a decrease in body weight gain was observed at the highest dose level in mice. NOAEC _{systemic} = 122 mg formic acid/m ³ , based on the reduced bodyweight gain observed at 244 mg/m ³ in the mouse.
Classification according to CLP and DSD	None

Value/conclusion used i	n the Risk Assessment – Sub-chronic repeated dose local effects
Value/conclusion	medium-term oral toxicity :
	Rat: NOAEL _{local} < 420 mg formate/kg bw/d
	Pig: < 149 mg formate/kg bw/d
	Medium-term inhalation toxicity:
	overall NOAEC _{local} = 60 mg formic acid/m ³
Justification for the selected value/conclusion	The medium-term oral toxicity of formic acid, administered as potassium diformate in the feed, was studied in the rat (90 days) and the pig (140 days). Local irritation effects in the stomach caused a dose-related thickening of the stomach at all dose levels, which was confirmed to be squamous cell hyperplasia of the stomach and gastrointestinal tract, and was largely reversible. High doses may produce adverse effects, such as decrease in body weight gain (rat), which might be due to the inherent irritating potential. In the rat, the NOAEL _{local} < 420 mg formate/kg bw/d, based on histological changes in the stomach.

	Medium-term inhalation toxicity was studied in rats and mice exposed to formic acid vapours for 13 weeks. The upper respiratory tract was the major target organ: minimal to mild squamous metaplasia of the respiratory epithelium and minimal degeneration of the olfactory epithelium. In addition, a decrease in body weight gain was observed at the highest dose level in mice. The overall NOAEC _{local} = 60 mg formic acid/m ³ , based on histopathological changes in the nasal region of both rats and mice observed at 122 mg/m ³ .
Classification according to CLP and DSD	None

3.7 LONG-TERM REPEATED DOSE TOXICITY

3.7.1 Long-term oral toxicity

Summary t	Summary table of oral long-term animal studies					
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/ group	Test substance, Dose levels, Route of exposure (gavage, in diet, other), Duration of exposure	NOAEL, LOAEL	Results	Remarks (e.g. major deviations)	Reference
Comparable to 94/40/EEC GLP: yes Rel. 1	Rat, Wistar, m + f main: 50/sex/group interim: 20/sex/group	KHCO ₂ •H ₂ CO ₂ [CAS No. 20642-05-1] purity 98- 99% 0, 50, 400, 2000 mg/(kg*d) = 0, 35, 280, 1400 mg formate/kg bw/d (nominal) Oral, feed continuous, 7 d/week 104 wk (interim kill at 52 wk)	NOAEL _{Local} : as formate: 35 mg/kg bw/d LOAEL _{Local} : as formate: 280 mg/kg bw/d NOAEL _{Systemic} : as formate: 280 mg/kg bw/d LOAEL _{Systemic} : as formate: 1400 mg/kg bw/d	<pre>52 weeks No clinical signs No active substance related mortality BW (gain): ↓ for high dose m+f Ophthalmoscopy: no effects on the eye Haematology, clinical chemistry, urinalysis: no consistent pattern of variation, no treatment effect Organ weight: no effect Necropsy: thick stomach (high dose) Histopathology: gastric irritation, stomach: foveolar epithelial (<i>males</i> grade 1: 11, grade 2: 3 /20 high dose animals vs 0/20 controls; <i>females</i> grade 1: 10, grade 2: 1 /20 high dose</pre>		BPD ID A6.5_01/ BPD ID A6.702 FA_BPR_Ann_II_8_9_3_01 FA_BPR_Ann_II_8_11_1_02 2002a/b

animals vs 0/20 controls) and basal cell hyperplasia (<i>males</i>
grade 1: 10, grade 2: 2 /20 high dose animals vs 0/20
controls; <i>females</i> grade 1: 10, grade 2: 2 /20 high dose
animals vs 0/20 controls),
salivary gland: acinar cell hypertrophy (incidence high
dose males 7/20, females 3/20 vs 0/20 controls),
kidney: ↓ incidence of pelvic
mineralisation (high dose males 0/20vs 6/20 control, high dose
females 6/20 vs 14/20 controls)
<u>104 weeks</u> No clinical signs
No active substance related mortality
BW (gain): ↓ for high dose, bw
gain: 27% (m), 19% (f) Food intake: ↓ for high dose,
3% (m), 6% (f) over 104 weeks Ophthalmoscopy: no effects on
the eye
Haematology, clinical chemistry, urinalysis: no consistent pattern
of variation, trend to ↓ RBC at pre-terminal investigation
Organ weight: no effect
Necropsy: nodules, raised focus, and thick stomach (high dose)
Histopathology: gastric
irritation, stomach: ↑ incidence and
severity of basal cell/squamous

cell hyperplasia at the lining ridge (mid dose <i>males</i> grade 1: 13/39, grade 2: 6/39, high dose males grade 1: 9/43, grade 2:
19/43, grade 3: 14/43 vs 3/42 grade 1 and 1/42 grade 2
controls; mid dose females
grade 1: 11/36, grade 2: 1/36, high dose females grade 1:
7/38, grade 2: 28/38, grade 3:
3/38 vs 4/39 grade 1 controls),
foveolar epithelial hyperplasia (high dose <i>males</i> grade 1:
17/43, grade 2: 23/43 vs 1/41
grade 1 and 0/42 grade 2
controls; high dose <i>females</i> grade 1: 21/38 vs 0/39 grade 1
controls), acanthosis,
hyperkeratosis (high dose)
salivary gland: acinar cell
hypertrophy ((high dose males 17/43 vs 0/42 controls, high
dose females 10/38 vs 0/39
controls)
duodenum: hypertrophy of the Brupper's glands (high dose
Brunner's glands (high dose males 16/43 vs 0/42 controls,
high dose females 8/38 vs 0/39
controls)
kidney: ↓ incidence of pelvic mineralisation (high dose males
4/43 vs 28/42 controls, high
dose females 20/38 vs 37/39
controls) and papillary
mineralisation (high dose females 2/38 vs 8/39 controls)

94/40/EEC GLP: yes Rel. 1	Mouse, CD, m + f 51/sex	KHCO ₂ •H ₂ CO ₂ [CAS No. 20642-05-1] purity 98- 99%: 0, 50, 400, 2000 mg/kg bw/d = 0, 35, 280, 1400 mg formate/kg bw/d (nominal), Oral, feed, continuous, 7 d/week, 80 wk	NOAELLocal/systemic: as formate: 280 mg/kg bw/d LOAELLocal/systemic: as formate: 1400 mg/kg bw/d	80 weeks Clinical signs: none related to treatment No active substance related mortality BW (gain): slightly but significantly lower in high-dose males (p<0.05). No difference between control and low and mid dose animals and for all female groups. Food intake: comparable between all groups, although with a very slight increasing trend in the high-dose males. Macroscopic investigations: no effects Haematology: No adverse effects on RBC or WBC Ophthalmoscopy: not examined clinical chemistry, urinalysis: not examined Organ weight: no data Necropsy: some evidence of treatment-related thick stomach in high-dose females, the only macroscopic finding, but not noted in males Pathology: limited signs of chronic irritation in the stomach; otherwise	BPD ID A6.7_02. FA_BPR_Ann_II_8_11_2_01

unremarkableHistopathology:No increase in any tumour type,slight local irritation of theforestomach with increasedincidence of hyperplasia of thelimiting ridge in high-dosemales.Non-neoplastic observations:gastric irritation,Thick stomach seen in someanimals, no dose-responserelationship in males, littlecorrelation with microscopicfindingsIncidence of findings in thestomach: $\frac{males}{1000000000000000000000000000000000000$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

				NOAEL = 280 mg formate/kg bw/d	
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
				Alveolar epithelial tumour statistics: numbers of tumour bearing animals and results of test for dose response $\frac{males females dose response}{(mg/kg bw/d) 0 1400 0 1400}$ fatal 0 1 ns (m, f) non-fatal 4 10 5 7 ns all 4 11 0.038* * increasing dose response; ns = not significant	
No guideline, but following	Pig, crossbred f 7 control	KHCO ₂ •H ₂ CO ₂ [CAS No. 20642-05-1] purity 95%	formate: 301	No signs of maternal toxicity (clinical signs, body weight development) or toxicity to	BPD ID A6.5_02 FA_BPR_Ann_II_8_9_4_0_JNS 2003

scientific standards GLP: no	sows, 8 sows in treated groups	0, 1.2%, 3.6% in the diet	(highest dose tested)	reproduction or development at any dose level.		
Rel. 3		0, 140, and 430 mg/kg bw/d = 0, 98, 301 mg formate/kg bw/d nominal) Oral, feed continuous, 7 d/week >300 days				

No human data are available on long-term oral toxicity.

The chronic oral toxicity of formate was investigated in the rat for up to 52 weeks and the effects on the incidence and morphology of tumours following oral administration of potassium diformate ("Formi") at 0, 50, 400, and 2000 mg/kg bw/d (0, 35, 280, 1400 mg formate/kg bw/d) for 104 weeks (DocIIIA6.5.-01/ FA BPR Ann II 8 9 3 01 and DocIIIA6.7.-02/ FA BPR Ann II 8 11 1 02: 2002a/b). The formate salt failed to produce any target-organ toxicity. There were no treatment related clinical signs or mortality. Local irritation effects in the stomach caused thickening of the stomach, which was confirmed histopathologically. At 52 weeks, in the high dose animals foveolar epithelial hyperplasia in the stomach was characterized by an increase in the depth of intensely eosinophilic epithelium on the surface of the fundic mucosa. Basal cell hyperplasia was restricted to the squamous epithelium of the limiting ridge. In addition, there was minor acinar cell hypertrophy in the submaxillary salivary gland of some high dose animals. In the kidney there was a lower incidence of pelvic mineralisation in high dose animals. At 104 weeks, there was an increase in the incidence and severity of basal cell/squamous cell hyperplasia at the limiting ridge in high and intermediate dose animals. In addition to the basal proliferation, there was increased acanthosis and hyperkeratosis. Foveolar epithelial hyperplasia was similar as at 52 weeks. There was acinar cell hypertrophy in the submaxillary salivary gland of high dose animals. Brunner's gland hypertrophy characterized by large acinar cells was observed in the duodenum of high dose animals. In the kidney there was a lower incidence of pelvic mineralization in high dose animals. Body weight and body weight gain was decreased for high dose animals. Ophthalmoscopy showed no effect on the eye. Haematology, clinical chemistry, urinalysis, and organ weight showed no indications for treatment-related effects. In conclusion, there was no evidence of systemic target organ toxicity, including the eyes, due to formate administration. LOAEL_{systemic/local} (52 wk) = 1400 mg formate/kg bw/d, and NOAEL_{systemic/local} (52 wk) = 280 mg formate/kg bw/d, based on reduced bw gain and gastric hyperplasia.

BPC-43-2022-07B

 $LOAEL_{systemic} (2 y) = 1400 mg$ formate/kg bw/d, and NOAEL_{systemic} (2 y) = 280 mg formate/kg bw/d, based on reduced bw gain. $LOAEL_{local} (2 y) = 280 mg$ formate/kg bw/d, and NOAEL_{local} (2 y) = 35 mg formate/kg bw/d, based on hyperplastic changes in the stomach and gastrointestinal tract.

The effects on the incidence and morphology of tumours was investigated in the **mouse** following oral administration in the feed of potassium diformate ("Formi") at 0, 50, 400, and 2000 mg/kg bw/d (0, 35, 280, 1400 mg formate/kg bw/d) for 80 weeks (DocIIIA6.7.-02, 2002b; see also section 3.9). The animals were examined for mortality, clinical signs of toxicity and FA BPR Ann II 8 11 2 01: body weight. Haematological, but no clinical-chemical parameters were evaluated. The surviving animals were subjected to necropsy, and tissue slices prepared for histopathology. There were no treatment-related clinical signs, morbidity or mortality. Body weight gain was slightly but significantly lower in high-dose males, although with a very slight trend in increased food consumption in the high-dose males. There were no treatment-related effects on the red and white blood cell counts. Local irritation effects in the stomach caused thickening of the stomach but without dose-response relationship in the males, and with little correlation with microscopic findings. There was an increased incidence of limiting ridge hyperplasia in the forestomach of high-dose males. This was characterized by a minor increase of thickness and folding of the squamous epithelium at the limiting ridge, with a slightly more basophilic basal layer. This finding was considered to indicate an adaptive change to minor local irritation by the test substance. Minor limiting ridge hyperplasia was seen in all group including controls. Increased incidences of Grade 1 (minimal) and Grade 2 (slight) were seen in high-dose males. There was no evidence of progression to neoplasia. The spectrum of neoplasia was generally consistent with that expected in mice of this strain. However, there was a higher incidence of primary lung tumours (bronchiolo-alveolar adenomas and carcinomas) in high dose males than in controls. One primary tumour of the stomach was seen in one control female. According to the authors of this study, primary lung tumours are common background tumours in mice of this strain, and the incidence in the high dose males was within the background range of the laboratory. The incidence of the control males was slightly lower than expected, and the incidences across all treated groups showed no dose-related trend. Therefore, the slight background variation seen in high dose males was not considered to be of toxicological relevance, despite the statistical significance. In conclusion, the dietary administration of potassium formate to mice at dose levels up to 1400 mg formate/kg bw/) for 80 weeks was well tolerated without treatment-related clinical effects or mortality. Treatment-related changes were limited to high-dose males and included decreased body weight, (not significant) increased food consumption, and an increased incidence of limiting ridge hyperplasia in the forestomach. The NOAEL for local/systemic toxicity was 280 mg formate/kg bw/d. There was no evidence of a tumorigenic effect in the stomach or any other tissue. The effects observed in this study and the NOAEL and LOAEL values derived from them are supportive of the effects and NOAEL and LOAEL values described in the 2002a study on rats.

A chronic pig study on the effects of potassium diformate on ovulation and fertility in breeding sows was made available (DocIIIA6.5.-02, FA_BPR_Ann_II_8_9_4_0_JNS; 2003). It focused on effects on fertility and, therefore, did not provide the full range of pathological and histopathological data which would be expected to be contained in guideline studies pertaining to chronic toxicity, reproduction toxicity, or developmental toxicity. However, the study provides additional data because the metabolic capability to dispose of formate is more limited in pigs. The study met generally accepted scientific standards, is well documented and, therefore, acceptable for assessment. In this study, pigs were fed 0, 140, 430 mg potassium diformate/kg bw/d (0, 98, 301 mg formate/kg bw/d) for over 300 days. No treatment-related effects were observed for maternal toxicity (clinical signs, mortality, body weight, feed consumption), nor on ovulation, fertility, gestation parameters,

number of live born piglets, piglet viability and weight gain until weaning. NOAEL_{systemic} = 301 mg formate/kg bw/d, based on lack of systemic and local toxicity at the highest dose tested.

Value used in Risk Ass	essment – Long-term oral toxicity
Value/conclusion	104-w oral toxicity, potassium formate, rat: LOAEL _{systemic} (2 y) = 1400 mg formate/kg bw/d, NOAEL _{systemic} (2 y) = 280 mg formate/kg bw/d LOAEL _{local} (2 y) = 280 mg formate/kg bw/d, NOAEL _{local} (2 y) = 35 mg formate/kg bw/d >300d oral toxicity, potassium formate, pig: NOAEL _{systemic} = 301 mg formate/kg bw/d
Justification for the value/conclusion	BPD ID A6.5_01, FA_BPR_Ann_II_8_9_3_01:2002aChronic oral toxicity of potassium formate in the rat has been assessed in a study in comparable to 94/40/EEC. There was no evidence of systemic target organ toxicity, including the eyes, due to formate administration. LOAEL _{systemic} (2 y) = 1400 mg formate/kg bw/d, and NOAEL _{systemic} (2 y) = 280 mg formate/kg bw/d, based on reduced bw gain. LOAEL _{local} (2 y) = 280 mg formate/kg bw/d, and NOAEL _{systemic} (2 y) = 35 mg formate/kg bw/d, based on hyperplastic changes in the stomach and gastrointestinal tract.BPD ID A6.502, FA_BPR_Ann_II_8_9_4_0_JNS;2003:A chronic pig study on the effects of potassium diformate on ovulation and fertility in breeding sows was made available. No treatment-related effects were observed for maternal toxicity (clinical signs, mortality, body weight, feed consumption), nor on ovulation, fertility, gestation parameters, number of live born piglets, piglet viability and weight gain until weaning. NOAEL _{systemic} = 301 mg formate/kg bw/d, based on lack of systemic and local toxicity at the highest dose tested.

Data waiving	
Information requirement	Chronic oral toxicity study on formic acid
Justification	A chronic toxicity study is available for the oral route using potassium diformate. The use of potassium diformate is justified because it is transformed into formic acid (DocIIIA6.2-01; FA_BPR_Ann_II_8_8_01: 1997).

3.7.2 Long-term dermal toxicity

No data are available on long-term dermal toxicity.

Value used in Risk Assessment – Long-term dermal toxicity	
Value/conclusion	n.a.
Justification for the value/conclusion	n.a.

Data waiving		
Information requirement	Long-term dermal toxicity study on formic acid	
Justification	Long-term oral toxicity test provides adequate information	

3.7.3 Long-term inhalation toxicity

No data are available on long-term inhalation toxicity.

Value used in Risk Assessment – Long-term inhalation toxicity		
Value/conclusion	n.a.	
Justification for the value/conclusion	n.a.	

Data waiving

Information requirement	Long-term inhalation toxicity study on formic acid
Justification	Long-term oral toxicity test provides adequate information

3.7.4 Overall conclusion on long-term repeated dose toxicity

Value used in the Risk A	ssessment – Long-term repeated dose systemic toxicity			
Value	long-term oral toxicity :			
	Rat: NOAEL _{systemic} = 280 mg formate/kg bw/d			
Justification for the selected value	The long-term oral toxicity of formic acid, administered as potassium diformate in the feed, was studied in the rat (2- year) and the pig (300 days). In the rat, local irritation effects in the stomach caused thickening of the stomach, which was confirmed histopathologically. There was an increase in the incidence and severity of basal cell/squamous cell hyperplasia, increased acanthosis, hyperkeratosis, foveolar epithelial hyperplasia, acinar cell hypertrophy in the submaxillary salivary gland, Brunner's gland hypertrophy in the duodenum. In the high dose animals, body weight (gain) was decreased and there was a lower incidence of pelvic mineralization in the kidney. NOAEL _{systemic} = 280 mg formate/kg bw/d, based on decreased bw gain at 1400 mg/kg bw/d in the 2-year rat study.			
Classification according to CLP and DSD	None			

Value/conclusion used i	Value/conclusion used in the Risk Assessment – Long-term repeated dose local effects		
Value/conclusion	long-term oral toxicity :		
	Rat: NOAEL _{local} = 35 mg formate/kg bw/d		
Justification for the selected value/conclusion	The long-term oral toxicity of formic acid, administered as potassium diformate in the feed, was studied in the rat (2- year) and the pig (300 days). In the rat, local irritation effects in the stomach caused thickening of the stomach, which was confirmed histopathologically. There was an increase in the incidence and severity of basal cell/squamous cell hyperplasia, increased acanthosis, hyperkeratosis, foveolar epithelial hyperplasia, acinar cell hypertrophy in the submaxillary salivary gland, Brunner's gland hypertrophy in the duodenum. In the high dose animals, body weight (gain)		

	was decreased and there was a lower incidence of pelvic mineralization in the kidney. NOAEL _{local} = 35 mg formate/kg bw/d, based on hyperplastic changes in the stomach and gastrointestinal tract at 280 mg/kg bw/d in the 2-year rat study.
Classification according to CLP and DSD	none

3.8 GENOTOXICITY

3.8.1 In vitro

Summary table of in vitro genotoxicity studies					
Method, Guideline,GLP status, Reliability	Test substance, Doses	Relevant information about the study (e.g. cell type, strains)	Results	Remarks (e.g. major deviations)	Reference
Bacterial reverse mutation test Ames, pre- incubation variant, acc.to Haworth et al., Environ. Mutagen. 5(1): 3- 142, 1983 GLP: no Rel. 4	Formic acid purity 98% dissolved in water 0, 10, 33, 100, 333, 1000, 3333 µg/plate	Salmonella typhimurium TA97, TA98, TA100, TA1535	+S9 : - -S9 : -	 Not considered as key study for concluding on in vitro mutagenicity in bacterial cells Cytotoxicity at ≥1000 µg/plate (-/+S9) Test conducted with/without S9 from hamster and rat liver Positive controls confirmed the validity of the test Publication Deviations: -missing <i>E. coli</i> or TA102 strain; -2-Aminoanthracene as sole positive control (microsomal enzymes not tested) -No pH conditions stated 	BPD ID A6.6.1_01 FA_BPR_Ann_II_8_5_1_01 Zeiger et al., 1992

				-individual plate counts are not presented	
Bacterial reverse mutation test Ames, OECD 471 GLP: yes Rel. 1 Standard plate test (SPT) Pre-incubation test (PIT)	Formic acid purity 85% dissolved in water SPT 0, 33, 100, 333, 1000, 2500, 5000 µg/plate PIT 0, 10, 33, 100, 333, 1000, 2500 µg/plate	Salmonella typhimurium TA1537, TA98, TA100, TA1535 <i>E. coli</i> WP2 uvrA	+S9:- -S9:-	Not mutagenic in bacterial cellsSPT: Cytotoxicity at ≥ 1000 µg/platePIT: Cytotoxicity at ≥ 100 µg µg/plateDepending on strain & test conditionsTest conducted with/without S9 from rat liver Positive controls confirmed the validity of the test+S9: 2-Aminoanthracene as positive control; S9 batch characterized with benzo(a)pyrene (pur. $\geq 96\%$) in TA98 & TA100	BPD ID A6.6.1_02 FA_BPR_Ann_II_8_5_1_02 2022
Mammalian	Formic acid	CHO K1 cells	+S9:±	No pH conditions stated Not clastogenic in	BPD ID A6.6.2_01
chromosome aberration test, OECD 473 GLP: no data Rel. 2	2M stock solution dissolved in water 270-1380 μg/ml 270, 360, 450, 540, 630 μg/ml (6- 14mM), at increased		-S9 : ±	mammalian cellsPos. results attributed to lowpH (pH 6.1 - 6.4):dose-dependent increasedaberration rate.1st seriesAt initial pH 6.1, withoutbuffering:12 mM (-S9): 15.9%	FA_BPR_Ann_II_8_5_2_01 Morita et al., 1990

buffer capacity up to	aberrations
1380 µg/ml (30 mM)	10mM (+S9): 20.5%
	aberrations
	Toxic concentration 12 – 14
	mM
	(pH ≤ 6.0).
	2 nd series
	Effect of neutralization of
	the medium
	12-14 mM: % aberrations
	initial pH -S9 +S9
	6.0 12 33
	6.4 4 2
	7.2 0 3
	<u>3rd series</u>
	Effect of buffer capacity
	At enhanced buffer, toxic
	conc. increased to 30 mM.
	Dose initial pH NaHCO3 HEPES
	(mM) 34mM 30mM
	0 7.4 0.75
	20 6.1 0.5
	25 5.8 0.5
	27.5 5.7 10.5
	30 5.4 toxic
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
	25 6.7 12
	30 5.9 toxic
	Chromosomal aberrations:
	chromatid specific:
	chromatid gaps, breaks,
	exchanges

				No positive control included, but positive results at acidic pH levels, demonstrated the sensitivity of the test system Testing program included acetic and lactic acid	
In vitro mammalian cell gene mutation test (HPRT), OECD 476; EEC 2000/32, B.12 GLP: yes Rel. 1	Formic acid 85.3% Water 14.3% 31 – 500 µg/ml <i>1st experiment</i> <u>-S9</u> : 0, 31.25, 62.5, 125, 250, 500 µg/ml <u>-S9</u> : 0, 25, 50, 100, 200, 400 µg/ml <i>2nd experiment</i> <u>-S9/-S9</u> : 0, 100, 200, 300, 400, 500 µg/ml Vehicle control: culture medium Positive controls: EMS 300 µg/ml (- S9): MCA 10 µg/ml (+S9):	CHO K1 cells	+S9 : - -S9 : -	Not mutagenic in mammalian cells There was no increase in the number of mutant colonies with or without metabolic activation compared with the vehicle control. Cytotoxicity: -S9: # colonies and cell density not reduced +S9: # colonies \downarrow at 200- 300 µg/ml cell density \downarrow at 300-400 µg/ml (2 nd exp.) 2 experiments, 6 replicates, pH and osmolality measured Mutant frequency (per 10 ⁶ cells), corrected: $\frac{Vehicle EMS MCA}{2^{nd} exp - S9 2.96 295.88}$ $1^{st} exp + S9 4.05 242.94$ $2^{nd} exp - S9 2.88 302.03$ $2^{nd} exp + S9 3.54 149.02$	BPD ID A6.6.3_01 FA_BPR_Ann_II_8_5_3_01 2002

Formic acid was tested together with a high number of chemicals for its potential to induce reverse **mutations** in **bacterial** strain *Salmonella typhimurium* TA97, 98, 100, 1535 at concentrations between 100 and 3333 µg/plate in the presence and absence of metabolic activation (rat,

BPC-43-2022-07B

hamster derived), using the pre-incubation variant of the Ames test according to Haworth et al., 1983 (DocIIIA6.6.1-01, FA_BPR_Ann_II_8_5_1_01; Zeiger et al., 1992). Two series of tests were performed. In case the result had been negative or equivocal in the first run, the S9-mix concentration was enhanced from 10 (first test) to 30%. A negative solvent control (water) and appropriate positive controls were carried along. Formic acid did not induce reverse mutations in S. typhimurium at concentrations between 100 and 3333 µg/plate in the presence and absence of metabolic activation (rat and hamster source), where the positive controls led to a clear increase in revertant colonies. Slight cytotoxicity was reported at 3333 µg/plate, in isolated cases at 1000 µg/plate. The authors concluded that formic acid was to be considered not mutagenic in bacterial cells. The following methodological deficiencies were identified for this study: only four strains of bacteria were used; neither *E. coli* WP2 uvrA, *E. coli* WP2 uvrA (pKM101), or *S. typhimurium* TA102 were utilized; 2-Aminoanthracene was used as the sole positive control in the presence of S9-mix without further characterization of the S9 batch with a mutagen that requires metabolic activation by microsomal enzymes; pH conditions were not stated, and no individual plate counts were presented. Therefore this study could not be considered as key study for concluding on *in vitro* mutagenicity in bacterial cells.

A recent GLP-compliant study report in line with OECD 471 has been made available (DocIIIA6.6.1-02, FA_BPR_Ann_II_8_5_1_02; 2022). Using both the standard plate (SPT) and pre-incubation (PIT) assay variant, formic acid was tested up to a dose of 5000 (SPT) and 2500 µg/plate (PIT), in the presence and absence of metabolic activation (rat derived). Formic acid did not lead to a relevant increase in the number of revertant colonies in the two assay variants, with or without S9 mix. Cytotoxicity was occasionally observed depending on the strain and test conditions at and above 1000 µg/plate (SPT) or at and above 100 µg/plate (PIT).

All required bacterial tester strains were accounted for. The number of revertant colonies in the negative controls, with and without S9 mix, were within the range of the respective historical control data of each tester strain. Suitable positive controls were selected per strain which induced an appropriate mutagenic response, in line with historical control data. As positive control in the presence of metabolic activation, 2-aminoanthracene was used for all tester strains. The S9 batch was characterized with benzo(a)pyrene (pur. \geq 96%) in TA98 and TA100 strains. pH conditions were not stated. However, as cytotoxicity was observed mainly at top dose levels, the impact of the pH value on the reliability of the study can be considered minor. Moreover, the selected top dose is in compliance with OECD TG 471. The study can be accepted as a key study. It can be concluded that formic acid is not mutagenic in bacterial cells.

Formic acid was tested for its potential to induce **chromosomal aberrations** in **mammalian** cells, CHO K1 cells (DocIIIA6.6.2-01, FA_BPR_Ann_II_8_5_2_01; Morita et al., 1990). A positive control was missing. The study was focused upon the influence of the pH of the medium, comprising various operations for shifting the pH as desired. Acetic and lactic acid were also tested in this study. In a first series, incubation was carried out in a standard medium without pH regulation. In a second series, the initial pH of the medium was adjusted to pH 6.0 with 14mM or 12 mM formic acid. These media were then neutralised to pH 6.4, and a second group to pH 7.2. In a third series, the effect of an increased buffer capacity was examined with 2 different buffer systems. All experiments were conducted with and without metabolic activation. There was a dose-related response in the chromosomal aberration rate. In the absence of additional buffer the effective doses of formic acid were 10-12 mM. Under the condition of enhanced buffer capacity, the effective doses increased. Depending on the buffer used, aberrant cells were seen at 25 or 27.5 mM and above. But there was no clastogenic activity at 20 or 25 mM formic acid. At 30 mM the formic acid was cytotoxic irrespective of the buffer system. Mainly chromatid-specific lesions (chromatid-type gaps and breaks with/without S9, chromatid exchanges with S9) were induced, also several-fold per cell at the high doses (= lower pH or buffer capacity). This also applied to

BPC-43-2022-07B

acetic and lactic acid, both included in the testing programme. It was concluded that formic acid is not itself clastogenic to these cells but that the acidic conditions of the medium were responsible for the chromosome aberrations observed (false –positive responses).

Conclusion used in Risk	Conclusion used in Risk Assessment – Genotoxicity <i>in vitro</i>		
Conclusion	In vitro, formic acid was not mutagenic in bacterial and mammalian cells.		
Justification for the conclusion	BPD ID A6.6.1_02, FA_BPR_Ann_II_8_5_1_02: 2022 BPD ID A6.6.2_01, FA_BPR_Ann_II_8_5_2_01 : Morita et al., 1990 BPD ID A6.6.3_01, FA_BPR_Ann_II_8_5_3_01: 2002 In vitro genotoxicity of formic acid has been assessed in appropriate studies. There was no increase in the number of mutant colonies observed with or with metabolic activation. Cytotoxicity occurred at/above 1000 µg/plate (Ames-SPT) or at/above 100 µg/plate (Ames-PIT) or 300 µg/ml, respectively. In mammalian CHO cells, formic acid produced a dose-related response in the chromosomal aberration rate at an initial pH 6.1-6.4 without buffering, with an effective dose of 10-12 mM. Under the condition of enhanced buffer capacity, the effective doses increased. Depending on the buffer used, aberrant cells were seen at 25 or 27.5 mM and above. But there was no clastogenic activity at 20 or 25 mM formic acid. At 30 mM the formic acid was cytotoxic irrespective of the buffer system. Mainly chromatid-specific lesions were induced. It was concluded that formic acid is not itself clastogenic to these cells but that the acidic conditions of the medium were responsible for the chromosome aberrations.		

3.8.2 In vivo

No in vivo data on genotoxicity are available.

Conclusion used in Risk Assessment – Genotoxicity in vivo

Belgium

PT4

BPC-43-2022-07B

Conclusion	n.a.
Justification for the conclusion	n.a.

Data waiving	Data waiving				
Information requirement	In vivo genotoxicity testing for formic acid				
Justification	Formic acid gave negative results in the <i>in vitro</i> gene mutation study in bacteria, the <i>in vitro</i> cytogenicity study in mammalian cells, and <i>in vitro</i> gene mutation assay in mammalian cells. Therefore, no <i>in vivo</i> genotoxicity studies (bone marrow assay for chromosomal damage or a micronucleus test) are required.				

3.8.3 Overall conclusion on genotoxicity

Conclusion used in the	Conclusion used in the Risk Assessment – Genotoxicity				
Conclusion	Formic acid has no genotoxic potential.				
Justification for the conclusion	<i>In vitro</i> , formic acid was not mutagenic in bacterial and mammalian cells. There was no increase in the number of mutant colonies observed with or with metabolic activation. In mammalian CHO cells, formic acid is not itself clastogenic but the acidic conditions of the medium were responsible for chromosome aberrations. In <i>vivo</i> data are not available and not required. The overall evaluation of the data leads to the conclusion that formic acid has no genotoxic potential itself.				
Classification according to CLP and DSD	none				

3.9 CARCINOGENICITY

Summary t	able of carci	nogenicity stud	ies in animals			
Method, Guideline, GLP status, Realibility	Species, Strain, Sex, No/ group	Test substance, Dose levels, Route of exposure, Duration of exposure	NOAEL, LOAEL	Results (Please indicate any results that might suggest carcinogenic effects, as well as other toxic effects)	Re- marks (e.g. major devia- tions)	Reference
Comparable to 94/40/EEC GLP: yes Rel. 1	Rat, Wistar, m + f 50/sex	KHCO ₂ •H ₂ CO ₂ [CAS No. 20642-05-1] purity 98-99%: 0, 50, 400, 2000 mg/kg bw/d = 0, 35, 280, 1400 mg formate/kg bw/d (nominal), Oral, feed, continuous, 7 d/week, 104 wk	NOAELLocal: as formate: 35 mg/kg bw/d LOAELLocal: as formate: 280 mg/kg bw/d NOAELSystemic: as formate: 280 mg/kg bw/d LOAELSystemic: as formate: 1400 mg/kg bw/d	No increase in any tumour type, local irritation in the gastro-intestinal tract associated with hyperplasia. Non-neoplastic observations: gastric irritation, stomach: ↑ incidence and severity of basal cell/squamous cell hyperplasia at the lining ridge (mid dose <i>males</i> grade 1: 13/39, grade 2: 6/39, high dose males grade 1: 9/43, grade 2: 19/43, grade 3: 14/43 vs 3/42 grade 1 and 1/42 grade 2 controls; mid dose fe <i>males</i> grade 1: 11/36, grade 2: 1/36, high dose females grade 1: 7/38, grade 2: 28/38, grade 3: 3/38 vs 4/39 grade 1 controls), foveolar epithelial hyperplasia (high dose <i>males</i> grade 1: 17/43, grade 2: 23/43 vs 1/41 grade 1 and 0/42 grade 2 controls; high dose		BPD ID A6.5_01/ BPD ID A6.702 FA_BPR_Ann_II_8_9_3_01 FA_BPR_Ann_II_8_11_1_02 2002a/b (see also 3.7.1)

				females grade 1: 21/38 vs 0/39 grade 1 controls), acanthosis, hyperkeratosis (high dose) salivary gland: acinar cell hypertrophy ((high dose males 17/43 vs 0/42 controls, high dose females 10/38 vs 0/39 controls) duodenum: hypertrophy of the Brunner's glands (high dose males 16/43 vs 0/42 controls, high dose females 8/38 vs 0/39 controls) kidney: ↓ incidence of pelvic mineralisation (high dose males 4/43 vs 28/42 controls, high dose females 20/38 vs 37/39 controls) and papillary mineralisation (high dose females 2/38 vs 8/39 controls) Neoplastic observations: Reduced incidence of fibroadenoma in the mammary gland of high dose females	
94/40/EEC GLP: yes Rel. 1	Mouse, CD, m + f 51/sex	KHCO ₂ •H ₂ CO ₂ [CAS No. 20642-05-1] purity 98-99%: 0, 50, 400, 2000 mg/kg bw/d = 0, 35, 280,	NOAEL _{Local/systemic} : as formate: 280 mg/kg bw/d LOAEL _{Local/systemic} : as formate:	No increase in any tumour type, slight local irritation of the forestomach with increased incidence of hyperplasia of the limiting ridge in high-dose males. Non-neoplastic observations: gastric irritation,	BPD ID A6.7_02. FA_BPR_Ann_II_8_11_2_01

1400 mg	1400	Thick stomach seen in some	
formate/k	kg mg/kg bw/d	animals, no dose-response	
bw/d		relationship in males, little	
(nominal)),	correlation with microscopic	
Oral, feed		findings	
continuou	is. 7	Incidence of findings in the	
d/week,		stomach:	
80 wk		males females (mg/kg bw/d) 0 35 280 1400 0 35 280 1400	
		n 51 51 51 51 51 51 51 51 51	
		thick 6 3 7 2 1 2 3 6	
		raised focus 0 0 0 0 0 0 2 0 0	
		Incidence of limiting ridge	
		hyperplasia in the stomach:	
		males females	
		(mg/kg bw/d) 0 35 280 1400 0 35 280 1400	
		n 36 40 36 33 37 34 35 40	
		grade 1 4 7 6 13 7 5 7 7 grade 2 0 0 6 0 0 0 0	
		increased incidence of grade 1	
		(minimal) and grade 2 (slight)	
		in high-dose males.	
		NOAEL = 280 mg formate/kg	
		bw/d	
		Neoplastic observations:	
		Increased incidence of primary	
		lung tumours in high-dose	
		males, but not in females:	
		bronchiolo-alveolar adenomas	
		and carcinomas	
		Bronchiolo-alveolar tumour	
		incidence:	
		males females (mg/kg bw/d) 0 35 280 1400 0 35 280 1400	
		$\begin{array}{c} (1167 \times 6 \ 0.001 \times 10^{-5} \ 0.001 \times 10^$	

m. carcinoma 0 2 5 2 0 3 0 3 b. adenoma 4 7 11 9 5 6 4 5 all 4 9 16 11 5 9 4 8	
Alveolar epithelial tumour statistics: numbers of tumour bearing animals and results of test for dose response $\frac{males \qquad females \qquad dose response}{(mg/kg\ bw/d) \ 0 \ 1400 \ 0 \ 1400} \ \dots \ $	
<pre>* increasing dose response; ns = not significant</pre>	

No human data are available on carcinogenicity.

The carcinogenic potential of formic acid was investigated in rats and mice. The formic acid salt, potassium diformate ("Formi"), was used as test material as it allowed to achieve high dose levels of the formate ion with the feed due to less irritating potency than formic acid itself.

The effects on the incidence and morphology of tumours was investigated in the **rat** following oral administration in the feed of potassium diformate ("Formi") at 0, 50, 400, and 2000 mg/kg bw/d (0, 35, 280, 1400 mg formate/kg bw/d) for 104 weeks (DocIIIA6.5.-01/ FA_BPR_Ann_II_8_9_3_01 DocIIIA6.7.-02/ FA_BPR_Ann_II_8_11_1_02: 2002a/b). Other parameters than non-neoplastic and neoplastic lesions are discussed in detail in section 3.7.1. That the systemic bioavailability of the test substance was considerable was reflected in the increased formate plasma levels of approx. 90 to 160 mg formate/l that were regularly found after the nocturnal feed intake of the rats in the high-dose group over the entire feeding period (see DOC-IIIA6.4.1_01/ FA_BPR_Ann_II_8_9_2_01, section 3.6.1.).

Non-neoplastic treatment-related changes were observed in the stomach, duodenum, salivary gland and kidney. In the stomach of high dose animals, there were treatment-related increased incidences of nodules, raised focus and thick stomach when compared with controls. These correlated with microscopic findings. A decrease in subcutis masses was noted in high-dose females. Compared to controls, findings in the stomach included: (1) increased incidence and severity of basal cell/squamous cell hyperplasia at the limiting ridge in mid and high dose animals. This correlated with the macroscopic findings described above; (2) acanthosis, hyperkeratosis, formation of variably sized and shaped rete pegs and papillae; associated with minor inflammatory cell infiltration in lamina propria and submucoso; (3) foveolar epithelial hyperplasia in high dose animals; (4) mild inflammatory lesions in the glandular stomach of high dose animals. The NOAEL was 35 mg/kg bw/d. Acinar cell hypertrophy of the salivary gland was similar to that observed in the interim-kill animals (52 weeks, see 3.7.1). Brunner's gland hypertrophy

BPC-43-2022-07B

characterised by large acinar cells was noted in the duodenum of high-dose animals. In the kidney, there was a lower incidence of pelvic and papillary mineralisation and of pyelitis in high-dose groups. In females, there was a decrease in acinar hyperplasia in the mammary gland, decrease in neuropathy in the sciatic nerve, cardiomyopathy in the heart and cysts in the ovary. Notably in high-dose males, there was a decrease in hepatocyte vacuolisation and of eosinophilic and basophilic foci.

The spectrum of **neoplasia** was consistent with that expected in rats of this strain. A reduced incidence of fibroadenoma in the mammary gland was noted in the high dose females. There were no tumours of unusual nature or incidence indicative of specific target organ carcinogenicity on the stomach or any other tissue.

The effects on the incidence and morphology of tumours was investigated in the **mouse** following oral administration in the feed of potassium diformate ("Formi") at 0, 50, 400, and 2000 mg/kg bw/d (0, 35, 280, 1400 mg formate/kg bw/d) for 80 weeks (DocIIIA6.7.-02, 2002b). The animals were examined for mortality, clinical signs of toxicity and body weight. FA BPR Ann II 8 11 2 01: Haematological, but no clinical-chemical parameters were evaluated. The surviving animals were subjected to necropsy, and tissue slices prepared for histopathology. There were no treatment-related clinical signs, morbidity or mortality. Body weight gain was slightly but significantly lower in high-dose males, although with a very slight trend in increased food consumption in the high-dose males. There were no treatment-related effects on the red and white blood cell counts. Local irritation effects in the stomach caused thickening of the stomach but without dose-response relationship in the males, and with little correlation with microscopic findings. There was an increased incidence of limiting ridge hyperplasia in the forestomach of high-dose males. This was characterized by a minor increase of thickness and folding of the squamous epithelium at the limiting ridge, with a slightly more basophilic basal layer. This finding was considered to indicate an adaptive change to minor local irritation by the test substance. Minor limiting ridge hyperplasia was seen in all group including controls. Increased incidences of Grade 1 (minimal) and Grade 2 (slight) were seen in high-dose males. There was no evidence of progression to neoplasia. The spectrum of neoplasia was generally consistent with that expected in mice of this strain. However, there was a higher incidence of primary lung tumours (bronchiolo-alveolar adenomas and carcinomas) in high dose males than in controls. One primary tumour of the stomach was seen in one control female. According to the authors of this study, primary lung tumours are common background tumours in mice of this strain, and the incidence in the high dose males was within the background range of the laboratory. The incidence of the control males was slightly lower than expected, and the incidences across all treated groups showed no dose-related trend. Therefore, the slight background variation seen in high dose males was not considered to be of toxicological relevance, despite the statistical significance. In conclusion, the dietary administration of potassium formate to mice at dose levels up to 1400 mg formate/kg bw/) for 80 weeks was well tolerated without treatment-related clinical effects or mortality. Treatment-related changes were limited to high-dose males and included decreased body weight, (not significant) increased food consumption, and an increased incidence of limiting ridge hyperplasia in the forestomach. The NOAEL for local/systemic toxicity was 280 mg formate/kg bw/d. There was no evidence of a tumorigenic effect in the stomach or any other tissue.

Conclusion used in Risk	Conclusion used in Risk Assessment – Carcinogenicity				
Value/conclusion	There is no carcinogenic potential in rats and mice fed potassium diformate.				
Justification for the value/conclusion	The effects on the incidence and morphology of tumours were investigated in rats and mice following oral administration in the feed of potassium diformate (0, 35, 280, 1400 mg formate/kg bw/d). Gastric irritation was observed in the rat and the mouse. However, non-neoplastic lesions were more pronounced in the rat than the mouse. In the rat, non-neoplastic treatment-related changes were observed in the stomach, duodenum, salivary gland and kidney, in the stomach with a clear correlation with stomach thickening. In the mouse non-neoplastic changes were observed in the stomach, low-grade limiting ridge hyperplasia in the forestomach, but with little correlation with the thickening of the stomach. There was no evidence of progression to neoplasia. NOAEL rat = 35 mg formate/kg bw/d, NOAEL mouse = 280 mg formate/kg bw/d, based on gastric hyperplasia. There was no evidence of a tumorigenic effect in the stomach or any other tissue. However, in the mouse there was a higher incidence of primary lung tumours, bronchiolo-alveolar adenomas and carcinomas, in the 1400 mg formate /kg bw/d males. Although there was a background variation, the incidence of the high dose group was within the historical range for this mouse strain in the test laboratory. This was not considered to be of toxicological relevance. In conclusion, the studies provided evidence that there was no cancerogenic potential in rats and mice fed potassium diformate.				
Classification according to CLP and DSD	none				

Data waiving	Data waiving				
Information requirement	Carcinogenicity testing of formic acid				
Justification	A carcinogenicity study is available using potassium diformate. The use of potassium diformate is justified because it is transformed into formic acid (DocIIIA6.2-01; FA_BPR_Ann_II_8_8_01: 1997).				

3.10 REPRODUCTIVE TOXICITY

3.10.1 Developmental toxicity

Summary 1	Summary table of animal studies on adverse effects on development					
Method, Guideline, GLP status, Reliability	Sex, No/ group	Test substance Dose levels, Duration of exposure	NOAELs, LOAELs (also for maternal effects)	Results	Remarks (e.g. major deviations)	Reference
OECD 414 GLP: yes Rel. 1	Rat Wistar female 25/group	sodium formate [CAS 141-53-7] purity >99% 0, 59, 236, 945 mg/kg bw/d = 0, 40, 160, 640 mg formate/kg bw/d Oral, gavage Exposure period day 6– 19 p.c.	NO(A)EL teratogenicity embryotoxicity 945 mg/kg bw/d = 640 mg formate/kg bw/d LO(A)EL teratogenicity embryotoxicity >945 mg/kg bw/d = >640 mg formate/kg bw/d	Dams: no maternal systemic toxicity reached Foetuses: no influence on gestation parameters no evidence of teratogenetic or embryotoxic effects <i>Morphological effects:</i> - External malformation (anophthalmia of the left eye): 1/213 high dose foetuses in 1/24 litters - Skeletal malformation (misshapen humerus): 1/213 control foetuses in 1/24 litters - External variations: none - Soft tissue variations (dilated renal pelvis with/without dilated ureters): no relation to dosing		BPD ID A6.8.1_01 FA_BPR_Ann_II_8_10_3_01 2005

			NO(A)EL maternal 945 mg/kg bw/d = 640 mg formate/ kg bw/d LO(A)EL maternal >945 mg/kg bw/d = >640 mg formate/ kg bw/d	mg/kgbw 0 40 160 640 % 5.0 3.8 6.1 1.9 tot # 5 4 5 2 - Skeletal variations: broad range in all groups, no relation to dosing	
OECD 414 GLP: yes Rel. 1	Rabbit Himalayan female 25/group	sodium formate [CAS 141-53-7] purity 100% 0; 100; 300; 1000 mg/kg bw/d =0, 68, 203, 677 mg formate/kg bw/d Oral, gavage Exposure period day 6– 28 p.i.	NO(A)EL teratogenicity embryotoxicity 1000 mg/kg bw/d = ~670 mg formate/ kg bw/d NO(A)EL maternal 1000 mg/kg bw/d = ~670 mg formate/ kg bw/d	Dams: no maternal systemic toxicity reached Foetuses: no influence on gestation parameters no evidence of teratogenetic or embryotoxic effects Morphological effects: - external, soft tissue, skeletal malformations: mg/kgbw 0 68 203 677 litter 24 23 22 23 foetuses 163 169 137 139 foetal incidence 5 4 5 9 litter incidence 5 4 9 affected	BPD ID A6.8.1_02 FA_BPR_Ann_II_8_10_1_01 2008a

BPC-43-2022-07B

foet/litter 3.8 2.6 3.1 6.7	
 external, soft tissue, skeletal variations: 	
mg/kgbw 0 68 203 677 litter 24 23 22 23 foetuses 163 169 137 139 foetal incidence 92 116 90 93 litter incidence 24 22 21 22	
affected foet/litter 58.0 66.1 67.2 66.6	

No human data are available on adverse effects on development.

The potential teratogenicity of formic acid was studied in rats and rabbits.

In **rats**, teratogenicity was studied at dose levels of 0, 40, 160, 640 mg formate/kg bw/d administered by oral gavage as sodium formate from day 6 to day 19 post coitum (DocIIIA6.8.1.-01, FA_BPR_Ann_II_8_10_3_01; 2005). Sodium formate was applied to avoid unspecific maternal toxic effects through the corrosive action of formic acid, while its potential bioavailability was expected to be equal to that of formic acid itself. No maternal toxicity was observed at any dose level. There were no treatment-related clinical signs or mortality observed, nor changes seen for body weight and food consumption in the dams. Intrauterine growth and survival were unaffected up to and including the highest dose level. The type and incidence of malformations and developmental variations did not indicate a treatment-related finding and were considered to be of spontaneous origin. Therefore no developmental toxicity and teratogenicity was observed up to and including the highest dose level tested i.e. 640 mg formate/kg bw/d. NOAEL_{maternal} = 640 mg formate/kg bw/d, NOAEL_{developmental}, teratogenicity = 640 mg formate/kg bw/d.

In **rabbits**, teratogenicity was studied at dose levels of 0, 68, 203, 677 mg formate/kg bw/d administered by oral gavage of sodium formate from day 6 to day 28 post insemination (DocIII6.8.1.-02, FA_BPR_Ann_II_8_10_1_01; 2008a). No treatment-related effects were observed in the dams concerning mortality, clinical signs, food consumption, (corrected) body weight (gain), uterus weight, and necropsy findings. With regard to reproduction, no dose-related effects were observed including conception rate, mean number of corpora lutea, total implantations, pre-and postimplantation losses, resorption, live foetuses, and foetal sex ratio. Marginally, but not statistically significant lower foetal body weights were observed at the highest dose tested. Examination of the foetuses revealed external, soft tissue and skeletal malformations in all test groups including the control. They did neither show a consistent pattern since a number of morphological structures of different ontogenic origin were affected nor a clear dose-response relationship. Findings appeared at incidences which were generally similar to historical control data. One external (paw hyperflexion), three soft tissue (absent lobus inferior medialis, dilated cerebral ventricle and malpositioned carotid branch), and a broad range of skeletal variations (e.g. incomplete ossifications of different bony structures) occurred in

BPC-43-2022-07B

all test groups including the control. There was no relation seen to dosing, and a comparable frequency was seen in the historical control data. Therefore no maternal and developmental toxicity and teratogenicity was observed up to and including the highest dose level tested i.e. 670 mg formate/kg bw/d. NOAELmaternal = 670 mg formate/kg bw/d, NOAELdevelopmental, teratogenicity = 670 mg formate/kg bw/d.

Conclusion used in Risk Assessment – Effects on development		
Value/conclusion	No developmental toxicity and teratogenicity was observed for formate in rats and rabbits. Rats: NOAELmaternal, developmental, teratogenicity = 640 mg formate/kg bw/d Rabbits: NOAELmaternal, developmental, teratogenicity = 670 mg formate/kg bw/d	
Justification for the value/conclusion	In rats, the type and incidence of malformations and developmental variations did not indicate treatment-related findings. In rabbits, no maternal and developmental toxicity and teratogenicity was observed up to and including the highest dose level tested.	

Data waiving	
Information requirement	Adverse effects of formic acid on development
Justification	Sodium formate was applied to avoid unspecific maternal toxic effects through the corrosive action of formic acid.

3.10.2 Fertility

Summary table of animal studies on adverse effects on fertility						
Method, Guideline, GLP status, Reliability	Sex, No/ group	Test substance Dose levels, Duration of exposure	NOAELs, LOAELs	Results	Remarks (e.g. major deviations)	Reference
OECD 416 GLP: yes Rel. 1	Rat Wistar,	sodium formate [CAS 141-53- 7]	NOAEL _{syst} 200 mg formate/kg bw/d	Parental F1 males: ↓ food consumption during 7/15 study weeks (↓ 5-9%)		BPD ID A6.8.2_01 FA_BPR_Ann_II_8_10_2_01

m/f	purity 100%	For F0 and F1	↓ bw (up to 6%) from week 9		
25/group	1000, 300, 1000	parental rats	\downarrow bw gain (up to 34%) ,		
	=0, 68, 203, 677 mg formate/kg bw/d	NOAEL fertility, reprod performance 670 mg formate/kg bw/d	<u>F1, F2 generation pups:</u> No adverse effects		
	continuous,	For F0 and F1	_		
	exposure period:				
	Before mating: at least 75 days	NOAELdevelopmental 670 mg formate/kg bw/d			
	Duration of exposure in general: from beginning of the study until sacrifice of parent F1, F2	For F1 and F2 progeny			
	m/f 25/group	25/group 0, 100, 300, 1000 =0, 68, 203, 677 mg formate/kg bw/d continuous, 7 d/week, exposure period: Before mating: at least 75 days Duration of exposure in general: from beginning of the study until sacrifice of	25/group0, 100, 300, 1000parental rats=0, 68, 203, 677 mg formate/kg bw/dNOAEL fertility, reprod performance 670 mg formate/kg bw/dcontinuous, 7 d/week, exposure period:For F0 and F1 parental ratsBefore mating: at least 75 daysNOAELdevelopmental 670 mg formate/kg bw/dDuration of exposure in general: from beginning of the study until sacrifice of parent F1, F2NOAELdevelopmental 670 mg for F1 and F2 progeny	25/group 0, 100, 300, 1000 parental rats till end of study =0, 68, 203, 677 mg NOAEL fertility, average bw gain ↓ 9% formate/kg NOAEL fertility, reprod performance formate/kg For F0 and F1 No AEL_developmental bw/d For F0 and F1 parental rats reprod performance For F0 and F1 parental rats No adverse effects No adverse effects No adverse effects bw/d For F0 and F1 parental rats No AEL_developmental formate/kg bw/d bw/d For F1 and F2 progeny For F1 and F2 progeny progeny	25/group 0, 100, 300, 1000 parental rats till end of study =0, 68, 203, 677 mg NOAEL rettility, reprod performance bw gain (up to 34%), average bw gain 1 9% =0, 68, 203, 677 mg NOAEL rettility, reprod performance F1, F2 generation pups: formate/kg bw/d For F0 and F1 bw/d For F0 and F1 parental rats Refore NOAELdevelopmental rats not reprotoxic, not developmental for mate/kg bw/d Duration of For F1 and F2 progeny progeny For F1 and F2 progeny parent F1, F2 parent F1, F2

No human data are available on adverse effects on fertility.

Considering the toxicity to fertility of formic acid, a two-generation reproduction toxicity study was conducted in the **rat** at dose levels of 0, 68, 203, 677 mg formate/kg bw/d administered orally in the feed as sodium formate over two parental (F0, F1) generations (DocIIIA6.8.2.-01, FA_BPR_Ann_II_8_10_2_01; 2008b). At least 75 days after the beginning of treatment, F0 animals were mated to produce a litter (F1). Mating pairs were of the same dose groups and F1 animals selected for breeding were continued in the same dose group as their parents.

Belgium

PT4

BPC-43-2022-07B

Groups selected from F1 pups were to become F1 parental generation, were offered diets containing test substance post weaning, and the breeding program was repeated to produce F2 litter.

No treatment-related clinical signs or mortality were observed. Signs of **systemic toxicity** were observed in the F1 male parental generation at the highest dose. Food consumption and body weight gain were dose-dependently decreased. This resulted in secondary weight changes of brain and liver, but without correlating histopathological findings. Pathological examinations revealed no test-substance-related changes in organ weight, gross lesions, changes in differential ovarian follicle counts or microscopic findings. There were no indications that the **fertility or reproductive performance** of the F0 or F1 parental animals were affected. Estrous cycle data, mating behaviour, conception, gestation, parturition, lactation, weaning, and sperm parameters, sexual organ weights, and gross and histopathological findings of these organs (including differential ovarian follicle counts in the F1 females) were comparable between all test groups and ranged within the historical control data of the test facility. All data recorded during gestation and lactation (embryo/foetal/pup development) gave no indications of any **developmental toxicity** in the F1 and F2 offspring up to the highest dose level. Pup viability, pup body weight, sex ratio, sex maturation were not affected.

In conclusion,

NOAEL_{systemic} = 200 mg formate/kg bw/d for the F0 and F1 parental rats,

based on adverse effects on food consumption and bw gain at 670 mg formate/kg bw/d in the F1 parental males.

based on the lack of adverse effects at the highest dose.

NOAEL_{developmental} = 670 mg formate/kg bw/d for the F1 and F2 progeny,

based on the lack of adverse effects at the highest dose.

There were no negative findings on reproductive or on developmental parameters. The number and developmental of the pups was normal and comparable to the control. Formate, administered in the feed of rats as sodium formate, was not toxic with regard to reproduction or development.

In addition, there were no effects on fertility observed in the 13-week inhalation studies performed with formic acid vapours (0, 15, 30, 61, 122, 244 mg/m³). For a more detailed discussion, see section 3.6.3: DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_03 and DocIIIA6.4.3-01/ FA_BPR_Ann_II_8_9_2_04: Thompson, 1992. There were no effects on measures of sperm motility, density, or testicular or epidydimal weights, and no changes in the length of the estrous cycle. However, no functional fertility parameters were studied.

BPC-43-2022-07B

The effects of potassium diformate (oral feed for 140 d or 300d) in breeding sows was studied by 2004 (DocIIIA6.4.1-02/ FA_BPR_Ann_II_8_9_2_02) and 2003 (DocIIIA6.5.-02/ FA_BPR_Ann_II_8_9_4_0_JNS). For a more detailed discussion, see section 3.6.1/3.7.1. The studies focused on effects on fertility and, therefore, did not provide the full range of pathological and histopathological data which would be expected to be contained in guideline studies pertaining to chronic toxicity, reproduction toxicity, or developmental toxicity. However, the study provides additional data because the metabolic capability to dispose of formate is more limited in pigs. No treatmentrelated effects were observed for maternal toxicity (clinical signs, mortality, body weight, feed consumption), nor on ovulation, fertility, gestation parameters, number of live born piglets, piglet viability and weight gain until weaning up to doses of 301 mg formate/k gbw/d for over 300 days.

Conclusion used in Risk Assessment – Fertility		
Value/conclusion	No adverse effects on fertility were observed for formate in rats. NOAEL parental, syst F0, F1 ~ 200 mg formate/kg bw/d; NOAEL fertility, reprod performance, developmental ~ 670 mg formate/kg bw/d	
Justification for the value/conclusion	There were no negative findings on reproductive or on developmental parameters. The number and development of the pups was normal and comparable to the control. Formate, administered in the feed of rats as sodium formate, was not toxic with regard to reproduction or development. Signs of systemic toxicity were observed in the F1 male parental generation at the highest dose.	

Data waiving	
Information requirement	Adverse effects of formic acid on fertility
Justification	Sodium formate was applied to avoid unspecific toxic effects through the corrosive action of formic acid.

3.10.3 Effects on or via lactation

Conclusion used in Risk Assessment – Effects on or via lactation		
Value/conclusion	No adverse effects on or via lactation are expected for formic acid.	

BPC-43-2022-07B

value/conclusionfrom the physico-chemical properties of formic acid that the possibility of formate to cross the mentioned barriers is The substance is highly soluble in water and the logKow is around -2.0. The pKa is 3.70 at 20°C, and therefore formic (and the related salt potassium diformate) is almost exclusively present in the ionised form at physiological pH (DocIII) 01, FA_BPR_Ann_II_8_8_01). It is known that only the unionised form is likely to cross biological membranes, and substances with a logP of 2-4 would likely cross membranes. The physico-chemical properties of formic acid differ lar		Consistent of hermitians are black (herein black) (
the formate molecule. Transfer into breast milk may be given due to the high solubility in water. In this context it shalso be mentioned that endogenous formic acid is produced in the intermediary metabolism in humans, and that the fragment is required in the biosynthesis of amino acids and nucleic acids (DocIIIA6.2-09, FA_BPR_Ann_II_8_8_08) there is a need in the developing fetus. Excess blood formate is rapidly metabolised to background levels in humans formate does not accumulate. Finally, there were no adverse effects noted in the testes, the brain, or the development offspring, in any of the numerous studies requiring repeated dosing. This includes all subchronic and chronic repeated dose studies, carcinogenicity studies, multigeneration reproduction and teratogenicity studies, conducted in several sp (rat, mouse, rabbit, pig) with either sodium formate or potassium diformate. Neurotoxicity is known to occur in hur only in the optical nerve following severe methanol intoxication leading to very high blood formate levels over an exterperiod of time (DocIIIA6.9). Thus, though formate crossing of the blood/brain, blood/testes, blood/placenta barriers the exposure via the breast milk cannot be fully excluded, no adverse effects were seen in the parental animals and	Justification for the value/conclusion	Crossing of barriers as blood/brain, blood/testes, blood/placenta, and exposure via the breastmilk: It may be deduced from the physico-chemical properties of formic acid that the possibility of formate to cross the mentioned barriers is low. The substance is highly soluble in water and the logKow is around -2.0. The pKa is 3.70 at 20°C, and therefore formic acid (and the related salt potassium diformate) is almost exclusively present in the ionised form at physiological pH (DocIIIA6.2-01, FA_BPR_Ann_II_8_8_01). It is known that only the unionised form is likely to cross biological membranes, and that substances with a logP of 2-4 would likely cross membranes. The physico-chemical properties of formic acid differ largely, hence it is unlikely that formate would cross biological membranes. This does not preclude the uptake by means of active transport systems. Penetration into (and through) membranes may occur in minor quantities because the small size of the formate molecule. Transfer into breast milk may be given due to the high solubility in water. In this context it should also be mentioned that endogenous formic acid is produced in the intermediary metabolism in humans, and that the C1-fragment is required in the biosynthesis of amino acids and nucleic acids (DocIIIA6.2-09, FA_BPR_Ann_II_8_8_08), i.e. there is a need in the developing fetus. Excess blood formate is rapidly metabolised to background levels in humans, i.e. formate does not accumulate. Finally, there were no adverse effects noted in the testes, the brain, or the development of offspring, in any of the numerous studies requiring repeated dosing. This includes all subchronic and chronic repeated dose studies, carcinogenicity studies, multigeneration reproduction and teratogenicity studies, blood/placenta barriers, and the exposure via the breast milk cannot be fully excluded, no adverse effects were seen in the parental animals and their progeny of several species following high-level long-term dosing, or dosing during reproduction and developmen

3.10.4 Overall conclusion on reproductive toxicity

Conclusion used in the Risk Assessment – Reproductive toxicity		
Value	Two-generation study, rat:	
	NOAEL _{parental} = 200 mg formate/kg bw/d	
	NOAEL _{offspring} = 670 mg formate/kg bw/d	
	NOAEL _{reproduction parameters} = 670 mg formate/kg bw/d	

	Teratogenicity studies, rat, rabbit:
	NOAEL _{maternal} = 640 mg formate/kg bw/d
	$NOAEL_{developmental} = 640 \text{ mg formate/kg bw/d}$
Justification for the selected value	The reproductive toxicity of formic acid was studied in a two-generation study in the rat administered orally in the feed as sodium formate (0, 68, 203, 677 mg formate/kg bw/d). The developmental toxicity of formic acid, administered by gavage as sodium formate, was studied in the rat (0, 40, 160, 640 mg formate/kg bw/d) and the rabbit (0, 68, 203, 677 mg formate/kg bw/d) teratogenicity studies.
	The two-generation study involving oral administration by feed of sodium formate in the rat showed that formate exerts no effect on the different reproduction parameters examined and induces no malformations in the selected dose range.
	NOAEL _{parental} = 200 mg formate/kg bw/d (based on reduced food consumption and body weight gain in F1 parental males at 670 mg formate/kg bw/d)
	NOAEL _{offspring} = 670 mg formate/kg bw/d
	NOAEL _{reproduction parameters} = 670 mg formate/kg bw/d
	The teratogenicity studies involving gavage administration of sodium formate in the rat and the rabbit showed that formate exerts no foetotoxic or teratogenic effects. No treatment-related effects were noted on the type and incidence of malformations and developmental variations in the selected dose range.
	NOAEL _{maternal} = 640 mg formate/kg bw/d
	NOAELdevelopmental = 640 mg formate/kg bw/d
Classification according to CLP and DSD	none

3.11 NEUROTOXICITY

Summary t	Summary table of animal studies on neurotoxicity					
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/ group	Test substance, Dose levels, Duration of exposure	NOAEL, LOAEL	Results	Remarks (e.g. major deviations)	Reference
Mechanistic study GLP: no Rel. 2	Rat Long Evans, males 6/group	Methanol [CAS 67-56-1] purity unknown 4 g methanol/kg bw (20% w/v in saline) by i.p., followed by supplemental doses of 2 g/kg bw at 12-24 hour intervals Pretreatment rats: exposed to a subanaesthetic concentration of nitrous oxide (N ₂ O/O ₂ 1:1) Route: i.p.		Nitrous oxide inhibited methionine synthetase in pretreated rats. The hepatic tetrahydrofolate (THF) level and the rate of formate oxidation were reduced to 50% compared to untreated rats (= comparable to the levels observed in monkeys and humans). Methanol intoxication of pre-treated rats resulted in acidosis and blood formate levels which were comparable to those seen in intoxicated monkeys and humans; Blood formate concentrations ranged between 8-15mM for 30-40 hours in the treated rats. Functional tests: Statistically significant changes were seen in both the retinal function (by electroretinogram) and the optical nerve integrity (by flash-evoked cortical potential) at 36 hours after the initial dose until the end of the experiment at 60 hours after initial dosing. Histopathology: The retina of the methanol-intoxicated rats showed diffuse edema and vacuolization at the junction of the inner and outer segments of the		BPD ID A6.10_01 FA_BPR_Ann_II_8_13_5_01 Eells et al., 2000

			, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	bigment cristae s bigment bhotored Jltrastru	ceptor ce ed epithe welling w ed epithe ceptors o uctural ch ced in th	elial cell vas see elium ce f intoxio anges	s. Mitoch n in the r ells and cated rate were mud	ondrial retinal s. ch less	
No guideline, but following scientific standards GLP: no Rel. 2	Monkey Rhesus males 4/group	Sodium formate [CAS 141-53-7] purity unknown Single i.v. 1.25 mmol/kg bw (57.5 mg/kg), followed by continuous infusion of 3.1mEq/kg bw/h = ~140 mg formate/ kg bw/h Rate of infusion such as to produce blood concentrations similar to those seen in methanol-	 	Pupillary and in m was obsorphthalin disc ede region, of part of t significa The retin ayer we Blood ph 7.6	pptic effect reflexes nost anim erved bet mology re ma (main central po he <u>optic</u> ntly reach na includi ere compl 1: mainta rmate lev Conc. in blood	were r mals no tween 2 evealed nly in th prtion o nerve v hing to ing the etely n mined be	Clinical obse Pupillary	to light 3 h. <u>optic</u> hinar ximal I part. -cell .4 and ervations Fundus	BPD ID A6.2_05 FA_BPR_Ann_II_8_13_2_02 Martin-Amat et al., 1978
		intoxicated monkeys Route: i.v.		2	(mEq/l) 1560 (34) 1380 (30)	39 50	reflex No response, mydriasis 7 mm No response, mydriasis 8 mm	changes Moderate optic disc edema with retinal edema Severe optic disc edema	

BPC-43-2022-07B

	3	920 (20)			Severe optic disc edema	
	4	550 (12)	25	mm	Moderate optic disc edema	

No regulatory neurotoxicity studies were made available for formic acid.

Formic acid, or formate, is associated with optical nerve and photoreceptor toxicity which is observed in humans and animals following methanol intoxication (DOCIIIA6.2_05, FA_BPR_Ann_II_8_13_2_02: Martin-Amat et al., 1978; DocIIIA6.10_01, FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000). See also Section 3.1.

The lesion may occur under conditions which allow formate to accumulate far above the background level, thus leading to high formate blood concentrations for extended periods of time. The blood levels of formate that correlate with the emergence of pathological changes are high. In a review by Eells et al. (2000) the following values after accidental and experimental methanol intoxication were summarised (see Review, Table 2):

Species	Blood Formate (mM)	Blood Bicarbonate (mEq/L)	Blood pH
N ₂ 0 - Treated Rats ^a	16.1 ± 0.7	7.7 ± 1.2	6.91 ± 0.06
Monkeys⁵	11.4 ± 1.2	6.5 ± 0.5	7.19 ± 0.02
Humans ^{c,d}	1 9.3 ± 4.4	3.2 ± 0.4	6.93 ± 0.02

TABLE	2.	Blood	formate,	pН	and	bicarbonate	concentrations	in
methand	ol-in	toxicate	ed rats, mo	onke	ys an	d humans.		

Note: Methanol-intoxicated rats were exposed to a mixture of N_2O/O_2 (1:1) for 4 hours prior to methanol administration (4 g/kg at zero time followed by 2g/kg at 12-hour intervals) and exposure to the gas mixture was continued throughout the experiment. Blood formate concentrations and blood gas measurements were determined 60 hours after the initial dose of methanol. Each value represents the mean \pm SE for 6 rats. Rodent data was compiled from studies by Eells *et al.*, (1996)^a. The monkey data was compiled from studies by Martin-Amat *et al.*, (1977)^b and the human data was compiled from studies conducted by McMartin *et al.*, (1980)^c and Eells *et al.*, (1991)^o.

BPC-43-2022-07B

Formate accumulated in all non-human primates (Rhesus monkey) 10 hours after an initial i.v. load of 57.5 mg formate/kg bw, followed by a continuous intravenous infusion of another 140 mg formate/kg bw/h. Maximum blood levels in the range 550 to 1560 mg/l were seen at 25 to 50 hours after the infusion had been started. The ophthalmological examinations revealed ocular problems evidenced by the lack of the light reflex, and moderate to severe retinal and optic disk edema. It is noteworthy that the blood pH was not changed by this treatment (BPD ID A6.2_05, FA_BPR_Ann_II_8_13_2_02; Martin-Amat et al., 1978).

Critical blood concentrations of 8 – 15 mM formate (= 360 – 680 mg/l) maintained over 30 – 40 hours were considered potentially detrimental, producing experimental ocular toxicity in monkeys (DocIIIA6.2_05, FA_BPR_Ann_II_8_13_2_02: Martin-Amat et al., 1978) and were associated with visual toxicity in acute cases of human methanol intoxication (DocIIIA6.10_01, FA_BPR_Ann_II_8_13_5_01: Eells et al., 2000).

In a review on methanol toxicity published by the CERHR Expert Panel (DocIIIA6.2_04, FA_BPR_Ann_II_8_8_03; NTP/USA, 2004), the background blood methanol and formate levels in humans have been reported to range between 0.6 and 2 mg methanol/I and between 3.8 and 11.2 mg formate/I. The blood methanol levels were increased in exposed males and females. However, inhalation exposure of 200 ppm methanol for 4 to 6 hours resulted in blood methanol levels of approx. 2 to 8 mg/I but had no influence on the blood formate levels (3.6 to 9.5 mg/I). It was further reported that the rate of formate oxidation in rats exceeds the maximal rate at which methanol is converted to formate: 1.6 versus 0.9 mmol/kg bw/h, respectively, whereas in non-human primates receiving moderately high doses the formate formation can exceed the oxidation of formate: 1.5 versus 0.75 mmol/kg bw/h, respectively.

An estimate of the methanol concentration that saturates the human folate pathway is 11 mM or 210 mg methanol/kg (DocIIIA6.2_04, FA_BPR_Ann_II_8_8_03: NTP/USA, 2004; BPD ID A6.2_12, FA_BPR_Ann_II_8_8_13: Kavet & Nauss., 1990). The latter would be equivalent to approx. 12.5 g methanol for a 60-kg adult.

The metabolic rate of 0.75 mmol formate/(kg bw*h) in pigtail monkeys is equivalent to approx. 34 mg formate/(kg bw*h) (DocIIIA6.2_04, FA_BPR_Ann_II_8_8_03: NTP/USA, 2004; BPD ID A6.2_12, FA_BPR_Ann_II_8-8_13: Kavet & Nauss, 1990). A metabolic saturation would occur only at higher intake rates. This finding is in line with the rapid and complete metabolism of formic acid or sodium formate observed in humans receiving 1, 2, or 3 g formic acid equivalents (DOCIIIA6.2_07, FA_BPR_Ann_II_8_8_06; Malorny, 1969b).

The concept that ocular problems are associated with increased formate levels over an extended time period is supported by the findings of a mechanistic study (DocIIIA6.10_01, FA_BPR_Ann_II_8_13_5_01; Eells et al., 2000). Pretreatment of rats with a subanaesthetic concentration of nitrous oxide lowered the rat's folate pool and hence the formate oxidation rate (see review, Table 1), and rendered the rats susceptible to methanol poisoning, as evidenced by blood formate levels of 8 to 15 mM for 30 to 40 hours and functional and morphological changes of the photoreceptor and the optical nerve.

TABLE 1. Hepatic Folate Concentrations, Hepatic Tetrahydrofolate Concentrations and Rates of Formate Oxidation in Rats, N₂O-Treated Rats, Monkeys and Humans.

Species	Total Hepatic Folate (nmole/g)	Hepatic Tetrahydrofolate (nmole/g)	Rate of Formate Oxidation (mg/kg/hr)
Untreated Rats ^a	26.9 ± 3.3	14.2 ± 0.9	69 ± 1.6
N2O-Treated Rats ^a	28.5 ± 1.2	8.5 ± 0.8	34 ± 1.0
Cynomolgus Monkeys*	25.5 ± 0.5	8.1 ± 0.2	34 ± 2.0
Humans⁵	15.8 ± 0.8	6.5 ± 0.3	N.D.

Note: Data compiled from studies conducted by Eells *et al.*, (1981, 1982)^a and Johlin *et al.*, (1987)^b.

Similar blood formate concentrations over these time periods have been shown to produce ocular toxicity in monkeys and are associated with visual toxicity in human methanol intoxication. Blood levels of 10 - 20 mM formate would be equivalent to 450 to 900 mg formate/l, based on the formate approx. molecular weight (approx. 45). Statistically significant changes were seen in both the retinal function (by electroretinogram) and the optical nerve integrity (by flash-evoked cortical potential) at 36 hours after the initial dose until the end of the experiment at 60 hours after initial dosing. The retina of the methanol-intoxicated rats showed diffuse edema and vacuolization at the junction of the inner and outer segments of the photoreceptor cells, and in the retinal pigmented epithelial cells. Mitochondrial cristae swelling was seen in the retinal pigmented epithelium cells and photoreceptors of intoxicated rats. Ultrastructural changes were much less pronounced in the optical nerve than in the retina (DocIIIA6.10_01, FA_BPR_Ann_II_8_13_5_01; Eells et al., 2000).

The common pathophysiological basis of the so-called toxic optical neurotoxicity was recently reviewed by Altiparmak (2013; FA_BPR_Ann_II_8_13_5_03). Formate inhibits the mitochondrial cytochrome oxidase which results in disrupted energy supply and generation of reactive oxygen species (ROS). The prelaminar portion of the optic nerve has a higher number of mitochondria and a high oxygen demand; consequently, this portion is more vulnerable.

Waiver for further studies on neurobehavioral and neuropathological effects of formic acid:

It is known from methanol intoxications that methanol cause selective optical nerve toxicity. This toxicity likely occurs through a direct effect of formic acid (metabolite of methanol in the body). Although no effect on the optical nerve was seen in the toxicological studies with formic

BPC-43-2022-07B

acid or its salts, two studies specifically investigating these effects were added in the dossiers to account for the effects of formic acid when formed as an exclusive sequel of acute methanol intoxication.

The 2 animal studies on neurotoxicity provided are limited to investigations of the optical nerve and eye. A further study investigating neurobehavioral and neuropathological effects (in general) after single and repeated exposure is not available. However, neurotoxicity is part of the ADS. Further studies investigating neurobehavioral and neuropathological effects are only necessary if there is an indication, or knowledge from acute or repeated dose studies that the active substance may have neurotoxic properties.

Though the acute oral and inhalation toxicity studies show some behavioural changes, the repeated dose toxicity studies (Thompson '92, 2002a/b) do not give rise to requesting additional neurotoxicity data as the main effects seen seem to be related mostly to irritation of the GIT and RT.

Human data on neurotoxicity:

In all human volunteer studies where formic acid or formate salts play a role, and in all human case reports, the single observation related to neurotoxicity is that formic acid, or formate, is associated with optical nerve and photoreceptor toxicity, which is frequently noted in humans following methanol intoxication. The aspect is addressed in more detail within the context of the toxico-kinetics and metabolism of formate in Section 3.1.

Conclusion used in Risk	Conclusion used in Risk Assessment – Neurotoxicity			
Value/conclusion	Classification/labelling of the active substance 'formic acid' for neurotoxicity according to the criteria in Regulation 1272/2008/EC: none			
Justification for the value/conclusion In methanol poisoning the metabolic capacity to dispose of formate is exceeded. The subsequent form is characterized by very high blood formate levels in the range of 8 to 20 mM (i.e. approx. 350 to 90 than 24 hours. Under such conditions, formate was demonstrated to cause functional and morphologi retina and the optical nerve.				
	It is conceivable that the ingestion of large doses of formate salts could have comparable results. The ingestion of large doses of formic acid would also cause high blood formate levels, but the acute effects, i.e. corrosivity and systemic toxicity, would prevail. Smaller doses of formate salts or formic acid are unlikely to saturate the metabolic rate which is 34 mg formate/kg bw/h in non-human primates.			

Overall, lesions of the optical nerve and the photoreceptors are expected to occur only at formate doses, or formate precursor doses, which exceed by far the folate pathway saturation and thus cause high formate levels for an extended period of time. The proper use of biocidal products containing formic acid is unlikely to be associated with exposures that are sufficiently high to exceed the metabolic rate of approx. 34 mg formate/kg bw/h.
No further neurotoxicity testing is required because formate accumulation and adverse effects on the optical nerve and photoreceptors are considered to be an exclusive sequel of acute methanol intoxication in primates. Repeated dose toxicity studies do not give rise to requesting additional neurotoxicity data as the main effects seen seem to be related mostly to irritation of the GIT and RT.

3.12 IMMUNOTOXICITY

No data are available on immunotoxicity.

Conclusion used in Risk	Conclusion used in Risk Assessment – Immunotoxicity			
Conclusion	There are no indications that Formic Acid has the potential to induce adverse effects involving the immune system.			
Justification for the conclusion	There is no evidence from skin sensitisation, repeated dose or reproduction toxicity studies, that formic acid may have immunotoxic properties.			

Data waiving	
Information requirement	Immunotoxicity study on Formic Acid
Justification	There is no evidence from skin sensitisation, repeated dose or reproduction toxicity studies, that formic acid may have immunotoxic properties. Hence, no specific study is required according to ECHA (2014) Guidance on the Biocidal Products Regulation v 1.1: Volume III: Human health - Part A: Information Requirements.

3.13 DISRUPTION OF THE ENDOCRINE SYSTEM

To assess potential effects on the endocrine system of formic acid the analysis of available information was conducted by implementing the assessment strategy outlined in the "*Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009*" (ECHA/EFSA, 5 June 2018) referred hereafter as the "guidance on ED".

STEP 1 - Gathering of all relevant information

Level 1: existing data and existing or new non-test information

Formic acid is the simplest carboxylic acid. The formate anion is the common metabolite of formic acid and formate salts in aqueous solutions at physiological pH values. Formic acid and its conjugate base, formate, are also naturally occurring in virtually all living organisms as essential endogenous metabolites critical for one-carbon metabolism [Lamarre et al. 2013]. Formate is formed from precursors in the intermediary metabolism and is used as an important constituent of the C1 intermediary metabolism which is required for the biosynthesis of amino acids and nucleic acid bases (purines and pyrimidines). As a critical endogenous metabolite, formate is not assumed to be inherently endocrine active.

Endocrine activity was investigated using in silico methods. None of the endocrine activity related profilers of the OECD QSAR Toolbox V4.1 showed an alert for formic acid. In fact, formic acid was grouped into the category "non-binder, non-cyclic structure". Furthermore, binding to either oestrogen receptor (ER) or androgen receptor (AR) was estimated using in silico models implemented in OASIS TIMES (V2.27.19.13). None of the three models predicted a binding of formic acid to ER (with or without metabolisation of parent compound) and AR (without metabolisation). Please note that formic acid and formate have no structural similarity to intrinsic endocrine active substances (e.g. oestrogen, androgen). Altogether, based on in silico data it is very unlikely that formic acid exerts an endocrine/EATS-specific effect based on an endocrine mode of action.

Level 2: In vitro assays providing data about selected endocrine mechanism(s) /pathways(s)

Formic acid was not tested in any of the listed in vitro receptor binding or transactivation assays. Only some in vitro information is available from other studies (with reliability 3) but not specific of endocrine activity. Therefore they are not considered relevant regarding ED activity.

Level 3 In vivo assays providing data about selected endocrine mechanism(s) /pathway(s)

No information on such in vivo assays is available for formic acid.

Level 4 & 5 In vivo assays providing data on adverse effects on endocrine relevant endpoints

Table 3.1 Summary	table of animal data on	endocrine dis	ruption*				
Summary table of a	Summary table of animal data on endocrine disruption						
Method, Duration of exposure, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/group	Test substance (including purity), Vehicle, Dose levels,	Results	Remarks (e.g. major deviations)	Reference		
Two-generation reproduction Toxicity Oral OECD 416(2001) GLP Reliability 1	Rat Wistar rats, strain Crl:WI(Han) Male & Female 25 animals/dose group	Sodium formate Purity 100% Doses: 0; 100; 300; 1000 mg/bw sodium formate =0, 68, 203, 677 mg formate/kg bw/d	For EAS-mediated: No effect on : Age at preputial separation, Age at vaginal opening, Anogenital distance, Cervix histopathology, Coagulating gland weight and histopathology, Epididymis histopathology, Estrus cyclicity, Genital abnormalities, Ovary histopathology, Oviduct histopathology, Prostate	NOAEL parental, syst F0, F1 ~ 200 mg formate/kg bw/d NOAEL fertility, reprod performance, developmental 670 mg formate/kg bw/d	BPD ID A6.8.2_01 FA_BPR_Ann_II_8_10_2_01 2008b		

	histopathology and weight, Seminal vesicles histopathology and weight, Sperm morphology, motility and number, Testis histopathology and weight, Uterus histopathology and weight, Vagina histopathology and smears, Increase of relative cauda epididymis weight (300) (no effect on absolute weight and no effect in higher dose) Increase of relative ovary weight (300 and 1000) (no effect on absolute weight)
--	--

For Thyroid- mediated: No effect on Thyroid histopathology and weight. For parameters sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
No effect on Thyroid histopathology and weight. For parameters sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
Thyroid histopathology and weight. For parameters sensitive to, but not diagnostic of, EATS: No effect on: Adrenals Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
histopathology and weight. For parameters sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
For parameters sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
For parameters sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
sensitive to, but not diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
diagnostic of, EATS: No effect on: Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
Adrenals histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
histopathology and weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
weight Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
Pituitary histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
histopathology, Live birth index, Male and Female fertility index, Gestation index and length,
Live birth index, Male and Female fertility index, Gestation index and length,
Male and Female fertility index, Gestation index and length,
fertility index, Gestation index and length,
Gestation index and length,
length,
Lactation index,
Litter size and
viability,
Number of
implantations,
Number of live
births,
Number of ovarian
follicles,
Post-implantation
loss,

Belgium

PT4

			Pup weight, clinical observation and mortality, Male and female mating index, Sex ratio and Time to mating Increase (20%) of pituitary weight (68 and 677 mg) but no dose-response relationship <u>For general toxicity:</u> Decrease of food consumption, body weight and absolute liver weight at 677 mg		
Subchronic oral toxicity in rodents	Rat, Crl:CDBR	Potassium diformate Purity 95%	For EAS-mediated: No effect on: Epididymis	NOAEL _{Systemic} : as formate: 840	BPD ID A6.4.1_01 FA_BPR_Ann_II_8_9_2_01
13 weeks, Oral	Male & Female	Doses :	histopathology and weight,	mg/kg bw/d LOAEL _{Systemic} : as formate:	1998
OECD 408 GLP	10 animals/sex/dose group	0, 600, 1200, 3000 mg Formi/kg	Macroscopic examination of mammary gland (M & F)	2100 mg/kg bw/d	

Reliability 1	bw/d (nomin	Ovary al) histopathology,	
		Testis	
	= 0, 42		
	840, 21		
	mg	Uterus	
	formate		
	bw/d	Vagina	
		histopathology	
		For Thyroid-	
		mediated:	
		No effect on	
		Thyroid	
		histopathology	
		For parameters sensitive to, but not	
		diagnostic of, EATS:	
		No effect on:	
		Adrenals	
		histopathology and	
		Pituitary	
		histopathology	
		Decrease of	
		adrenals weight	
		(but not dose	
		related and not	
		statistically	
		significant)	

			For general toxicity: Decrease of food consumption and body weight at 600 mg.		
Subchronic inhalation toxicity 13 weeks, Inhalation Similar to OECD 413 GLP Reliability 1	Rat, Fischer 344/N rats Male & Female 10 animals/sex/dose group	Formic acid Purity 95% Dose: 0, 8, 16, 32, 64 and 128 ppm	For EAS-mediated:No effect on:Epididymishistopathology andweight,Estrus cyclicity,Ovaryhistopathology,Prostatehistopathology,Seminal vesicleshistopathology,Sperm morphology,motility andnumbers,Testishistopathology andweight,Uterushistopathology.	NOAEL _{Systemic} : 244 mg/m ³ (highest dose tested)	BPD ID A6.4.3_01; FA_BPR_Ann_II_8_9_2_03 Thompson, 1992

			For general toxicity: No effect		
Subchronic inhalation toxicity 13 weeks, Inhalation Similar to OECD 413 GLP	Mouse, B6C3F1 Male & Female 10 animals/sex/dose group	Formic acid Purity 95% Dose: 0, 8, 16, 32, 64 and 128 ppm	For EAS-mediated: No effect on: Epididymis histopathology and weight, Estrus cyclicity, Ovary histopathology, Prostate histopathology, Seminal vesicles histopathology, Sperm morphology, Testis histopathology, Uterus histopathology. Decrease in sperm motility (32 ppm)compared to controls but within the historical range for controle mice. No dose-response relationship	NOAELSystemic: 122 mg/m ³ LOAELSystemic: 244 mg/m ³	BPD ID A6.4.3_01; BPD ID A6.4.3_02; FA_BPR_Ann_II_8_9_2_04 Thompson, 1992

			Increase sperm number (up to 33%) dose- response relationship Increase relative testis weight (128 ppm) (no effect on absolute weight) <u>For Thyroid- mediated:</u> No effect on Thyroid histopathology <u>For general toxicity:</u> Decrease of body weight and absolute liver weight at dose 128 ppm. Increase of absolute liver weight (8.4%) at 32 and 64 ppm but not at 128 ppm (M) and decrease at 64 and 128 ppm (F)		
Combined chronic toxicity and (dietary	Rat, Wistar: Crl:HanWist(Glx:BRL)BR	Potassium formate	For EAS-mediated: No effect on:	NOAEL _{Systemic} : as formate:	BPD ID A6.5_01/ BPD ID A6.7 01 FA_BPR_Ann_II_8_9_3_01

administration) oncogenicity study in the rat 104 weeks, Oral Similar to OECD 451-3 GLP Reliability 1	Male & Female 20 animals/sex/dose group	Purity: 98% and 99% Doses 0, 50, 400, 2000 mg/kg bw/d = 0, 35, 280, 1400 mg formate/kg bw/d	Epididymis histopathology and weight, Macroscopic examination of mammary gland (M & F), Ovary weight, Prostate histopathology, Testis histopathology and weight, Uterus histopathology and Vagina histopathology Decrease of incidence of fibroadenoma on mammary gland. Decrease in Ovary cysts in high dose females. <u>For Thyroid mediated:</u> No effect on Thyroid histopathology	280 mg/kg bw/d LOAEL _{Systemic} : as formate: 1400 mg/kg bw/d	FA_BPR_Ann_II_8_11_1_02 2002a/b
--	---	---	--	---	------------------------------------

Belgium

PT4

Prenatal	Rabbit,	Sodium	sensitive to, but not diagnostic of, EATS No effect on: Adrenals histopathology and weight Pituitary histopathology For general toxicity: Decrease of food consumption, body weight and incidence of basophilic foci in liver at 1400 mg. For parameters	NO(A)EL	BPD ID A6.8.1_02
Developmental Toxicity Study Oral, day 6 to 29 post insemination OECD 414(2001) GLP Reliability 1	Himalayan Rabbit Females 25 animals/dose group	formate, Purity 100% Doses: 0, 100, 300, 1000 mg/kg bw/day	sensitive to, but not diagnostic of, EATS: No effect on: Fetal mortality and weight, Live fetus, Number of implantations, Pre and Post implantation loss, Placental weight, Resorption and Sex ratio	teratogenicity embryotoxicity =670 mg formate/ kg bw/d NO(A)EL maternal =670 mg formate/ kg bw/d	FA_BPR_Ann_II_8_10_1_01

Prenatal Developmental Toxicity Study Oral, day 6 to 20 post coitum OECD 414(2001) GLP Reliability 1	Rat, Wistar: Crl:HanWist(Glx:BRL) Females	Sodium formate Purity >99% Doses: 0, 40, 160, 640 mg formate/(kg bw*d)	Increase of fetal malformations (dose 1000) but within the historical range. For general toxicity: No effect For parameters sensitive to, but not diagnostic of, EATS: No effect on: Fetal development, mortality and weight, Conception rate, Live fetus, Placental weight, Number of implantations, Pre and post implantation loss, Resorption and Sex ratio For general toxicity: No effect	NO(A)EL teratogenicity embryotoxicity =640 mg formate/kg bw/d NO(A)EL maternal = 640 mg formate/ kg bw/d	BPD ID A6.8.1_01 FA_BPR_Ann_II_8_10_3_01 2005
Prenatal Developmental Toxicity Study	Pig, Large White x Landrace hybrid Female	Potassium diformate purity 98.7%	<u>For parameters</u> <u>sensitive to, but</u> <u>not diagnostic of,</u> <u>EATS:</u>		BPD ID A4.4.1_02 B

BPC-43-2022-07B

Oral, 140 days		Doses:	No effect on:		
No guideline	6 animals/ dose group	0, 157, 384, 753 mg/kg	Reproduction parameters and		
GLP		bw/d	development of piglets at birth and		
Reliability 2			until weaning.		
			For general		
			<u>toxicity:</u>		
			No effect		

STEP 2 - Assemble and assess lines of evidence for endocrine activity and adversity

	Groupin g	Lines of evidence	Specie s	Exposur e, length	Route of exposur e	Effect dose	Observed effects (positive or negative)	Assessme nt of each line of evidence	Assessme nt of the integrate line of evidence	Modalit Y
				13 weeks	Oral					
Tuto queto			Det	13 weeks	Inhalatio n					
Integrate d line of	EATS-	Thyroid histopatholo	Rat	132 days	Oral	n.a.	No effect	No evidence of	:	
evidence for	mediated paramet	gy		104 weeks	Oral	adversity				
endocrin e adversity	er		mouse	13 weeks	inhalatio n					
		Thyroid weight	rat	132 days	oral	n.a.	No effect	No evidence of adversity		

		1	1			1	
	Age at preputial separation	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Age at vaginal opening	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Anogenital distance	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Cervix histopatholo gy	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Coagulating gland histopatholo gy	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Coagulating gland weight	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Epididymis histopatholo gy	rat	13 weeks	oral	n.a.		
		mouse	13 weeks	inhalatio n			
		rat	13 weeks	inhalatio n		No effect	No evidence of adversity
	57	rat	132 days	oral			
		rat	104 weeks	oral			
	Epididymis weight	rat	132 days	oral	203 mg (formate)/k g bw/day	Increase of relative cauda	Overall no evidence of adversity.

					epididymis weight Due in part to the decrease of body weight (No effect on absolute weight). Moreover there is no dose- response relationship.		
	rat	13 weeks	oral				
	mouse	13 weeks	inhalatio n				
	rat	13 weeks	inhalatio n	n.a.	No effect		
	rat	104 weeks	oral				
	mouse	13 weeks	inhalatio n			No	
Estrus cyclicity	rat	13 weeks	inhalatio n	n.a.	No effect	evidence of adversity	
	rat	132 days	oral				
Genital abnormalitie s	rat	132 days	oral	n.a.	No effect	No evidence of adversity	
	rat	13 weeks	oral	n.a.	No effect		

Macroscopic examination of mammary gland	rat	104 weeks	oral			No evidence of adversity	
Mammary gland histopatholo gy	rat	104 weeks	oral	1400 mg(formate)/ kg bw/day	Decreased incidence of fibroadenom a. This is a known secondary effect of low body weight and is described commonly in the literature1	Overall no evidence of adversity.	
	mouse	13 weeks	inhalatio n		No effect		
	rat	13 weeks	inhalatio n	n.a.			
	rat	13 weeks	oral				
Ovary histopatholo	rat	132 days	oral			Overall no evidence of	
gy	rat	104 weeks	oral	1400 mg(formate)/ kg bw/day	Decrease in cysts in high dose females, related to a lower body weight.	adversity.	

Ovary weight	rat	132 days	oral	203 mg (formate)/k g bw/day	Increase relative ovary weight Due in part to the decrease of body weight (No effect on absolute ovary weight). Moreover there is no dose- response relationship.	Overall no evidence of adversity	
	rat	104 weeks	oral	n.a.	No effect		
Oviduct histopatholo gy	rat	132 days	oral	n.a.	No effect	No evidence of adversity	
	mouse	13 weeks	inhalatio n				
Prostate histopatholo	rat	13 weeks	inhalatio n	n.a.	No effect	No evidence of	
gy	rat	132 days	oral			adversity	
	rat	104 weeks	oral				
Prostate weight	rat	132 days	oral	n.a.	No effect	No evidence of adversity	

	Seminal	mouse	13 weeks	inhalatio n			No
	vesicles histopatholo gy	rat	13 weeks	inhalatio n	n.a.	No effect	evidence of adversity
	57	rat	132 days	oral			
	Seminal vesicles weight	rat	132 days	oral	n.a.	No effect	No evidence of adversity
		mouse	13 weeks	inhalatio n			No
	Sperm morphology	rat	13 weeks	inhalatio n	n.a.	No effect	evidence of adversity
		rat	132 days	oral			
						Decrease of sperm motility with no dose- response relationship.	
	Sperm motility	Mouse	13 weeks	inhalatio n	6 ppm	Moreover the values for exposed mice fall well within the historical range for controle mice	Overall no evidence of adversity
		rat	13 weeks	inhalatio n	n.a. No effect		
		rat	132 days	oral			

	Sperm numbers		Mouse	13 weeks	inhalatio n	32 ppm	Increase of concentratio n at 32 and 128 ppm	No evidence of
		numbers	rat	13 weeks	inhalatio n	n.a.	No effect	adversity
			rat	132 days	oral			
			rat	13 weeks	oral			
			mouse	13 weeks	inhalatio n		No effect	
		gy .	rat	13 weeks	inhalatio n	n.a.		No evidence of adversity
			rat	132 days	oral			
	Testis weight	rat	104 weeks	oral				
		Testis weight	Mouse	13 weeks	inhalatio n	128 ppm	Increase of the relative testis weight at the higher dose. Related to a lower body weight (No effect on absolute testis weight)	Overall no evidence of adversity.
			rat	13 weeks	oral			
		rat	13 weeks	inhalatio n	n.a.	No effect		

[<u>г</u>	
			rat	132 days	oral				
			rat	104 weeks	oral				
			rat	13 weeks	oral				
			mouse	13 weeks	inhalatio n				
		Uterus histopatholo gy	rat	13 weeks	inhalatio n	n.a.	No effect	No evidence of adversity	
		57	rat	132 days	oral			,	
			rat	104 weeks	oral				
		Uterus weight	rat	132 days	oral	n.a.	No effect	No evidence of adversity	
			rat	13 weeks	oral		No effect		
		Vagina histopatholo	rat	132 days	oral	n.a.		No evidence of	
		gy	rat	104 weeks	oral	11.0.	No enect	adversity	
		Vaginal smears	rat	132 days	oral	n.a.	No effect	No evidence of adversity	
	Paramete		rat	132 days	oral			No	
	r	Adrenals	rat	13 weeks	oral	n.a.	No effect	evidence of	
	to, but 9y not diagnosti	rat	104 weeks	oral			adversity		
		rat	13 weeks	oral	2100 mg	Decrease of adrenals weight in the			

					highest dose in females. Related to a lower terminal body weight.	Overall no evidence of adversity	
	rat	104 weeks	oral	n.a.	No effect		
	rat	132 days	oral				
Live birth index	rat	132 days	oral	n.a.	No effect	No evidence of adversity	
Birth index	pig	>150 days	oral	n.a.	No effect	No evidence of adversity	
Male and Female Fertility index	rat	132 days	oral	n.a.	No effect	No evidence of adversity	
	rat	17 days	oral	n.a.	No effect		
Fetal development	rabbit	22 days	oral	1000 mg	Increase of fetal malformatio ns at the highest dose but within the historical control range.	Overall no evidence of adversity	
Fetal	rat	17 days	oral	n.a.	No effect		
mortality	rabbit	22 days	oral				

	pig	>150 days	oral			No evidence of adversity
	rat	17 days	oral	n.a.	No effect	No
Fetal weight	rabbit	22 days	oral			evidence of adversity
Gestation index	rat	132 days	oral	n.a.	No effect	No evidence of adversity
Conception rate	rat	17 days	oral	n.a.	No effect	No evidence of adversity
Gestation length	rat	132 days	oral	n.a.	No effect	No evidence of adversity
Lactation index	rat	132 days	oral	n.a.	No effect	No evidence of adversity
Litter size	rat	132 days	oral	n.a.	No effect	No evidence of adversity
Litter viability	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	rat	132 days	oral			No
Live fetus	rat	17 days	oral	n.a.	No effect	evidence of
	rabbit	22 days	oral			adversity
	rat	132 days	oral	– n.a.	No effect	
	rat	17 days	oral			

	Number of implantation s	rabbit	22 days	oral			No evidence of adversity
	Number of live births	rat	132 days	oral	n.a.	No effect	No evidence of adversity
	Number of ovarian follicles	rat	132 days	oral	n.a.	No effect	No evidence of adversity
		rat	132 days	oral			
	Pituitary histopatholo	rat	13 weeks	oral	n.a.	No effect	No evidence of
	gy	rat	104 weeks	oral			adversity
	Pituitary weight	rat	132 days	oral	100 & 1000 mg	Increase (20%) of pituitary weight but no dose- response relationship	Overall no evidence of adversity
	Placental	rat	17 days	oral			No
	weight	rabbit	22 days	oral	n.a.	No effect	evidence of adversity
	Post	rat	132 days	oral			No
	implantation	rat	17 days	oral	n.a.	No effect	evidence of
	loss	rabbit	22 days	oral			adversity
	Pre r implantation	rat	17 days	oral	n.a.	No effect	No
		rabbit	22 days	oral	n.a.	No effect	evidence of adversity

		Pup development	rat	132 days	oral	n.a.	No effect	No evidence of adversity
			rat	132 days	oral	n.a.	No effect	No
		Pup mortality	pig	>150 days	oral	11.0.	No enect	evidence of adversity
		Male and Female mating index	rat	132 days	oral	n.a.	No effect	No evidence of adversity
			rat	17 days	oral			No
		Resorption	rabbit	22 days	oral	n.a.	No effect	evidence of adversity
		Sex ratio	rat	17 days	oral			No
			rabbit	22 days	oral	n.a.	No effect	evidence of
			rat	132 days	oral			adversity
	Time to mating		rat	132 days	oral	n.a.	No effect	No evidence of adversity
			mouse	13 weeks	inhalatio n	128 ppm	Decrease	Decrease of
			pig	>150 days	oral	n.a.	No effect	body weight at high
General			rabbit	22 days	oral	n.a.	No effect	doses only; related to
toxicity		Body weight	rat	13 weeks	Oral	600 mg	Decrease	the
	r	rat	17 days	oral	n.a.	No effect	decrease of	
		rat	132 days	oral	1000 mg	Decrease	consumptio	
		rat	104 weeks	oral	2000 mg	Decrease	n	

		rat	13 weeks	inhalatio n	n.a.	No effect	
		pig	>150 days	oral			
		rabbit	22 days	oral	n.a.	No effect	Decrease of
	Food	rat	17 days	oral			food
	consumption	rat	13 weeks	Oral	600 mg	Decrease	consumptio n at high
		rat	132 days	oral	1000 mg	Decrease	doses only.
		rat	104 weeks	oral	2000 mg	Decrease	
		mouse	13 weeks	inhalatio n			
		pig >150 days		oral	n.a.	No effect	
	Lines	rat	13 weeks	inhalatio n			Overall no evidence of
	Liver histopatholo gy	rat	104 weeks	oral	2000 mg	Increase hepatocyte vacuolisation , eosinophilic and basophilic foci in the liver of high dose males.	liver toxicity, except at high dose in 1 study.
	Liver weight	mouse	13 weeks	inhalatio n	32 ppm	Absolute liver weight: Increase (8.4%) at 32 and 64 ppm	Minor effects in liver weight.

						but not at 128 ppm (M) and decrease at 64 and 128 ppm (F)		
		rat	13 weeks	Oral	n.a.	No effect		
		rat	132 days	oral	1000	Decrease (7.5%) Related to the reduced body weight.		
		rat	13 weeks	inhalatio n	n.a.	No effect		
		rat	104 weeks	oral		No enect		
		mouse	13 weeks	inhalatio n				
	Kidney	pig	>150 days	oral			No	
	histopatholo	rat	132 days	oral	n.a.	No effect	evidence of	
	ду	rat	13 weeks	inhalatio n			adversity	
		rat	104 weeks	oral				
	Kidney weight	mouse	13 weeks	inhalatio n	64 ppm	Increase of relative kidney weight at 64 ppm (F) and 128 ppm	Minor effects in kidney weight in 2 studies.	

							(M&F) Related to the reduced body weight (no effect on absolute kidney weight)		
			rat	132 days	oral	300 mg	Increase of absolute and relative kidney weight at dose 300 and 1000. (up to 8.1%)		
			rat	13 weeks	oral	n.a.	No effect		
			rat	13 weeks	inhalatio n				
			rat	104 weeks	oral				
		Brain histopatholo gy	rat	104 weeks	oral	n.a.	No effect	No evidence of adversity	
		Brain weight	rat	132 days	oral	300 mg	Increase of relative brain weight in female F0 (but reduced terminal body weight)	Overall no evidence of adversity	

BPC-43-2022-07B

			rat	104 weeks	oral	n.a.	No effect			
		Mautality	mouse	13 weeks	inhalatio n	- n.a.	No effect	No evidence of effect on mortality		
			pig	>150 days	oral					
			rabbit	22 days	oral					
			rat	13 weeks	Oral					
		Mortality	rat	17 days	oral					
			rat	132 days	oral					
			rat	104 weeks	oral					
			rat	13 weeks	inhalatio n					

¹Ghanta, N. R. et al (1987): Influence of body weight on the incidence of spontaneous tumours in rats and mice of long term studies. American Journal of Clinical Nutrition 45: 252-260

Roe, J. C. (1987): The problem of pseudocarcingenicity in rodent bioassays.

Banbury Report 25: Nongenotoxic Mechanisms in Carcinogenicity.

STEP 3 - Sufficiency of the dataset

For EAS parameters, according the guidance on ED, a two-generation reproductive toxicity study (OECD TG416, test protocol according to latest version of January 2001) is enough to consider that EAS-mediated adversity has been sufficiently investigated.

A two-generation reproductive toxicity study was performed with sodium formate in 2008 according to OECD TG416 guidelines (2001).

Therefore, EAS-mediated parameters are considered to be sufficiently investigated.

Regarding thyroid, the available ED adversity related studies (OECD 416, 414 (two species), 408, 451-3 and 413 (two species)) did not investigate all thyroid parameters, since some of the studies are old and did not recorded mandatory T parameters (T3/T4 and TSH level, HDL/LDL ratio and thyroid weight for 2 key studies are missing).

No effect of formic acid was detected in the investigated parameters (macroscopic aspect, histopathology and weight).

Since no adverse effect on thyroid was recorded in the life time carcinogenicity study or in the others available studies, it was agreed at the 14th ED expert group (4-5 june 2019) to consider that the **data set is sufficient for Thyroid.**

Please also note that further vertebrate testing was not supported because the substance is corrosive to the gastro-intestinal tract at low doses.

STEP 4 - Initial analysis of the evidence

According the available studies, there is no evidence of adversity for either "EATS-mediated" or "sensitive to but not diagnostic of EATS" parameters.

Effects on liver and kidney, were recorded in some studies but they are inconsistent between sex, studies and species and cannot be explained by an endocrine pathway.

According the guidance on ED, page 36, scenario 1a is concluded and therefore **ED criteria are not met for Human Health**.

	Conclusion used in Risk Assessment – Endocrine disruption					
Conclusion			ED criteria not met for Human Health			
Justification conclusion	for	the	Scenario 1a : No evidence of EATS-mediated adversity			

3.14 FURTHER HUMAN DATA

Summary ta	Summary table of further human data				
Type of data/ report, Reliability	Test substance	Relevant information about the study	Observations	Reference	
Report on workplace exposure	Formic acid	Measurement of formic acid at the workplace (8-hour time weighed average) 138 workplace measurements	production, filling, processing, laboratory. The mean values and the 95% percentiles were all far below the threshold limit of 5 ppm or 9.6 mg/m ³ . The highest values were seen at the filling station, but still below the threshold, with the mean value of 1.1 mg/m ³ , and the 50%, 90% and 95% percentiles at 0.65, 2.7 and 8.2 mg/m ³ , respectively.	DocIIIA6.12.1-01 FA_BPR_Ann_II_8_12_1_01 2006	
Health records from industry	Formic acid Concentration not stated; presumably 50- 85%	Sex: not reported Age: 25, 20, 34 and 53 years Route of exposure: dermal	Lesions of skin and eye following facial splashes (3 cases) during filling operations and transportation; one case of skin lesions following contact with contaminated wood.	DocIIIA6.12.3-01 FA_BPR_Ann_II_8_12_3_01 1994, 2002	
Case report	Formic acid 60%	1 male, 27-year-old Route of exposure: oral	Suicidal ingestion, 45-90 ml (decalcifying agent). Clinical signs: vomiting, abdominal pain Blood: pH 6.86, pCO ₂ 70.4 mmHg, HCO ₃ 10.6 mmol/l, base deficit -22 mmol/l, initial serum formate level 370.3 µg/ml, haemolysis Autopsy: ulceration of oesophagus, complete necrosis of gastric mucosa, oedema and necrotic areas in deeper tissue	BPD ID A6.12.2_01 FA_BPR_Ann_II_8_12_2_01 Westphal et al., 2001	

			layers of stomach, no perforation, coagulated blood in stomach, necrosis of mucosa duodenum. Post-mortem formate concentrations: 855.4 μg/ml (heart blood) 2712 μg/ml (peart blood) 2712 μg/ml (gastric contents) 1128 μg/ml (hemorrhagic fluid abdominal cavity) 3051 μg/ml (bile) 2664 μg/ml (contents small intestine) 442.7 μg/g (liver) 542.3 μg/g (kidney) Within 30 hours after ingestion: corrosion of the gastro- intestinal tract, metabolic acidosis, haemolysis, massive bleeding, hepatic and renal failure, death.	
Case report	Formic acid 50%	1 female, 39-year-old Route of exposure: oral	Suicidal ingestion, 200 ml (descaling product). Clinical signs: severe retrosternal and epigastric pain, dyspnea, cyanotic appearance, vomiting blood (2 h after ingestion) Blood: pH 6.87, pCO ₂ 46.1 mm Hg, HCO ₃ 8.6 mmol/l, base deficit of -26.4 mmol/l, haemolysis (20 min after admission to hospital) Initial serum formate level 348 µg/ml (7.6 mmol/l), elimination T _{1/2} 2.5 hours Urine: red Gastroscopy: severe lesions oesophagus and stomach, superficial burns duodenum Complications: severe gastrointestinal bleeding, pneumonia, acute tubular necrosis, adult respiratory distress syndrome, peritonitis, sepsis Result: Local: corrosion and massive bleeding, loss of blood pressure Systemic: Severe metabolic acidosis and haemolysis, renal failure	BPD ID A6.12.2_02 FA_BPR_Ann_II_8_12_2_02 Verstraete et al., 1989

			Death: 6 weeks after ingestion	
Case report	Formic acid conc. not known	30 males 23 females 16 to 46 year- old Route of exposure: oral	Suicidal ingestion, ≥ 10 ml, (rubber workers) Major complications: Gastro-intestinal: facial burns, ulcerations of oral and pharyngeal mucosa, abdominal pain, contractures and keloid formation of affected skin, oesophagus stricture (16/53 cases) requiring reparative surgery Respiratory system: inhalation pneumonitis (45 of 53 patients) with cough dyspnea, cyanosis, could proceed to respiratory infection and failure Vascular hypotension: 17/53 cases Haemolysis, haematuria within few hours of ingestion, rapidly followed by renal failure in severe cases, within a day in less severe cases, in total 20/53 cases Result: Local: corrosion and massive bleeding, loss of blood pressure Systemic: Severe metabolic acidosis and haemolysis, renal failure Death: 15/53 patients	BPD ID A6.12.2_03 FA_BPR_Ann_II_8_12_2_03 Rajan et al., 1985
Case report	Formic acid 40-55%	1 male 2 females 35, 56, 66 year-old Route of exposure: oral	Suicidal ingestion, estimated volumes 'one mouthful' to 50- 100 ml (descaling product) <i>35-year-old woman, 40% formic acid, 3 mouthfuls:</i> massive bleeding, haemolysis, died on d14 after shock and massive haematemesis. Ulcerations throughout oesophagus and stomach, tubular necrosis, early thrombosis of the portal vein <i>66-year-old woman, 55% formic acid, 55 to 100 ml:</i> massive bleeding, haemolysis, extensive erosion of oesophagus, stomach, duodenum, died on d5	BPD ID A6.12.2_04 FA_BPR_Ann_II_8_12_2_04 Naik et al., 1980

			56-year-old man, mouthful of 55% formic acid: died on d11 due to circulatory failure Result: Local: corrosion and massive bleeding, loss of blood pressure Systemic: Severe metabolic acidosis and haemolysis, renal failure Death	
Case report	Formic acid 44 to 60%	male/female <12 years to adult 45 cases Route of exposure: oral	Accidental and suicidal ingestion Estimated doses: < 10 g (children) to 200 g (adults) Children: accidental ingestion of low doses (\leq 10 g), reversible oropharyngeal burns in 9 children, no deaths Adults: suicidal ingestion (34/36 cases), accidental ingestion (2/36) <u>5-30 g</u> : reversible oropharyngeal burns (16); abdominal pain, vomiting, dyspnea, dysphagia (5); hematemesis, pneumonitis, esophageal strictures (2) <u>30-45 g</u> : intravascular coagulation, acute renal failure, hematemeses, liver impairment, oesophagal strictures <u>45-200 g</u> : corrosive perforations of the abdominal viscera and gastrointestinal hemorrhage, acute renal failure dose up to 45g: 28/29 patients survived dose 45g-200g: 14/16 patients died Result: Local: corrosion and massive bleeding, loss of blood pressure Systemic: Severe metabolic acidosis and haemolysis, renal failure Death	BPD ID A6.12.2_05 FA_BPR_Ann_II_8_12_2_05 Jefferys and Wiseman, 1980.

Belgium

PT4

Case report	Formic acid 87 to 96%	male/female children 183 cases Route of exposure: oral	Accidental ingestion: only small quantities Vomiting (10/183 children) and visible caustic lesions in mouth and throat (28/183 cases) Result: Reversible burns of oesophagus	BPD ID A6.12.2_06 FA_BPR_Ann_II_8_12_2_06 von Muehlendahl et al., 1978
Case report	Formic acid conc. not known	1 male, 35-year-old Route of exposure: dermal	Accidental splash from a container on the maxilla, chin, around mouth, thorax (occupational) Clinical signs: burning pain, sialorrhoae, nausea, vomiting Skin: blisters, necrotic areas Systemic: blood pressure 110/60, pulse and breathing regular, blood gases and acido-balance normal, no formic acid detected in blood and urine Result: skin corrosion	BPD ID A6.12.2_07a FA_BPR_Ann_II_8_12_2_07 Malizia et al.,1977
Case report	Formic acid undiluted, conc. not known	1 female, 15-year-old Route of exposure: dermal	Accidental splash on lower extremities (20% of total body surface) Clinical signs: burns, nausea, vomiting (4 hrs after exposure = start treatment) Skin: depth of burns not determined, became full-thickness. Gross oedema on d2 and d3 without fever, ocular damage or pulmonary complications. Burns surgically revived on d16, grafted several times. Major scarring of burned areas persisted. Urine: brownish, hemoglobinuria Blood: pH 7.23, HCO ₃ 16.7 mmol/I, base deficit 9.5, hemolysis Patient recovered rapidly from metabolic acidosis. Result: Skin corrosion Mild metabolic acidosis	BPD ID A6.12.2_08 FA_BPR_Ann_II_8_12_2_08 Sigurdsson et al., 1983

Belgium

Case report	Formic acid 90%	1 female, 3-year-old	Accidental splash on right torso and extremities (35% of total body surface)	BPD ID A6.12.2_09 FA_BPR_Ann_II_8_12_2_09
		Route of exposure:	Clinical signs: severe distress (10 min after exposure = start treatment)	
		dermal	Skin: full-thickness second- and third-degree burns. Required several skin grafts during several months	
			Urine: initially dark red, hemoglobinuria resolved within few days without kidney failure Blood: pH 6.85, HCO ₃ 16.7 mmol/l, base deficit -29.7 on 100% oxygen, bicarbonate 6mEq/l; initial serum formate level 400 µg/ml, hemolysis Patient recovered rapidly from metabolic acidosis. Result: Skin corrosion Metabolic acidosis	
Case report	Formic acid 98%	1 male, 39-year-old	Accidental spray (aerosol) into the face with concomitant inhalation (occupational)	BPD ID A6.12.2_10 FA_BPR_Ann_II_8_12_2_10
		Route of exposure:	Clinical signs: facial burns (3% of total body surface), dyspnea	Yelon et al., 1996
		inhalation	Nasopharyngoscopy: mild supraglottic erythema, normal vocal cords	
			Skin: second-degree burns	
			Pulmonary function tests: Vital capacity reduced on d1, recovered largely within 14 days. Complains of dyspnea till d15	
			Day 1	
			FVC (L): 3.74 (79% predicted) FEV ₁ (L): 2.86 (73% predicted) FEV ₁ /FVC: 76.38 (92% predicted) FEF _{25%-75%} (l/sec): 2.32 (56% predicted)	
			Day 15	
			FVC (L): 4.35 (92% predicted) FEV ₁ (L): 3.62 (92% predicted)	

			FEV ₁ /FVC: 83.09 (101% predicted) FEF _{25%-75%} (l/sec): 3.82 (92% predicted) Result: Reversible Pulmonary dysfunction: Reactive Airway Dysfunction Syndrome	
Case report	Fumes from formic acid (85%) and carbon monoxide (concentration not known)	1 male, 22-year-old Route of exposure: inhalation	Suicide by mixing formic acid with concentrated sulphuric acid in a confined space External chemical burns Internal injuries mainly to the respiratory tract. Injury to the oropharyngeal area and trachea, pulmonary edema, and subpleural petechiae. Complete lack of the respiratory epithelium of the trachea, edema of mucosa, and submucosa of the trachea, thrombi, and hemolysis inside the small vessels of the trachea, pulmonary edema, hemolysis, and thrombosis in the lung vessels Death due to CO intoxication; corrosion/irritation of skin, trachea, lungs, stomach due to formic acid fumes.	Bakovic M, et al (2015) FA_BPR_Ann_II_8_12_2_11
Case report	Fumes from formic acid (concentration not reported, amount 950 ml) and carbon monoxide (concentration not known)	1 male, 26-year-old Route of exposure: inhalation	Suicide by mixing formic acid with concentrated sulphuric acid in a confined space. Death. The body showed pronounce bright pink-red lividity. The autopsy was otherwise unremarkable. No further info on formic acid effects.	Lin PT and Dunn (2014) FA_BPR_Ann_II_8_12_2_12
Case report	Fumes from formic acid (98-100%) and carbon monoxide	1 male, 26-year-old; 1male, 53- year-old, 1	Suicide by mixing formic acid with concentrated sulphuric acid in a confined space 26-year-old: death. No autopsy	Yang CC et al. (2008) FA_BPR_Ann_II_8_12_2_13

	(concentration not known)	female, 53- year-old Route of exposure: inhalation	 53-year-old father: coma, hypoxemia, metabolic acidosis, and a carboxyhemoglobin level of 45.8%. Developed acute respiratory distress syndrome. Transient ulceration of vocal cords. 53-year-old mother: dizziness, headache, carboxyhemoglobin level of 23.0% In addition to the toxicities of carbon monoxide, concomitant inhalation of formic acid fumes can cause severe lung injury, which may complicate the management of carbon monoxide poisoning. 	
Retrospective study	formic acid	302 cases Males and females Age: 29.7-55, mean age 42.8 years Route of exposure: Oral, dermal, inhalation	Suicide Mean (SD) quantity consumed: 110 (78) mL The most common symptoms noted at presentation were: vomiting (78.5 %) abdominal pain (56.3% hematemesis (48.3%) respiratory distress (44 %) haematuria (30.1%) oliguria (24.5%) hypotension (24.5%) melena (22.2%) direct corneal injury (0.007%) Mean (SD) pH of all patients was 7.3 and the bicarbonate concentration was 19.2 (5.1) mEd/L. Leucocytosis was seen in 57.5% of the patients; liver enzymes (GOT, GPT) were elevated above normal values in 62.1% of the patients. The effectivity of medical treatment depends largely on the ingested dose and concentration of FA, the time delay after exposure. Low blood pH and bicarbonate concentration reflect the severity.	Dalus D et al. (2013) FA_BPR_Ann_II_8_12_5_01

BPC-43-2022-07B

The mortality rate was 35.4%. Bowel perforation, shock, and tracheoesophageal fistula were associated with 100% mortality.	
A higher blood pH was less likely to result in mortality. Dysphagia was noted in 154 patients, 98 of whom showed oesophageal stricture on evaluation, requiring repeat endoscopic dilatations after discharge. The prevalence of oesophageal stricture among the 195 patients who survived was 50.2%.	

Medical surveillance on manufacturing plant personnel:

A total of 138 workplace measurements have been conducted during the period 2001-2006, covering all kinds of operations (production, filling, processing, laboratory). All reported results represented 8 hours shift average values (TWA) obtained by personal air sampling. None of the measurements exceeded the threshold limit of 5 ppm or 9.6 mg/m³ (most well below). To prevent direct skin contact, protective gloves (neoprene or nitrile rubber) are used. According to the applicant workplace exposure is low, due to the appropriate protective measures taken. Consequently, medical surveillance on plant personnel is not required (DocIIIA6.12.1-01: 2006).

Four cases of accidental skin and eye contact were seen during 14 years (1989-2002) of operation of BASF's production plant. Lesions of skin and eye were seen following facial splashes (3 cases) during filling operations and transportation, and one case of skin lesions following contact with contaminated wood. As concentrated formic acid is corrosive, the employees underwent First Aid measures and required further medical treatment in hospital. Type and duration of medical treatment were not reported, nor the outcome in the health records (DocIIIA6.12.3-01: 1994, 2002).

Clinical cases and poisoning incidents (professional operators and the general population), Expected effects of poisoning, aspects of diagnosis of poisoning, prognosis:

Oral ingestion

There are published cases of accidental ingestion of formic acid, but the incidence is relatively low. The suicidal ingestion (34 of 36 cases, i.e. 94%) clearly prevailed over the accidental ingestion (2 of 36 cases) in adults (DocIIIA6.12.2_05, FA_BPR_Ann_II_8_12_2_05: Jefferys and Wiseman, 1980). Easy access to formic acid was considered to promote the suicidal ingestion of formic acid in the State of Kerala, India, among workers of the rubber industry who used formic acid as a coagulant (DocIIIA6.12.2_03, FA_BPR_Ann_II_8_12_2_03: Rajan et al., 1985).

Belgium

PT4

BPC-43-2022-07B

In children, the accidental ingestion occurs generally at low doses, i.e. **up to 10 g formic acid**, which reportedly caused reversible burns of the pharyngeal tract in 9 children, who all survived (DocIIIA6.12.2_06, FA_BPR_Ann_II_8_12_2_06: von Muehlendahl et al., 1978). The consumption of only small quantities might be related to the pungent smell of formic acid.

The doses are much higher in cases of deliberate ingestion by adults. Doses **up to 45 g** formic acid were survived by 28 of 29 patients. Most of the patients died (14 of 16; 88%) after doses between 45 – 200 g formic acid (DocIIIA6.12.2_05, FA_BPR_Ann_II_8_12_2_05: Jefferys and Wiseman, 1980). In a retrospective study with 302 patients who committed suicide, the estimated mean ingested quantity was 110 mL of formic acid. The mortality rate was 35.4% in this study. The prognosis depended largely on the concentration of formic acid and the amount ingested and the lag time until onset of medical treatment (FA_BPR_Ann_II_8_12_8_02: Dalus et al., 2013).

Due to the corrosivity of formic acid, local effects must be expected at all dose levels. The amount ingested and the concentration determine the grade and the location of the effects. Therefore, the observations range from moderate burns around the mouth to severe corrosion of the gastro-intestinal tract with destruction of the esophagus, perforation of the stomach, and corrosion of the small intestine together with massive bleeding and systemic toxicity:

- Nine children accidentally ingested less than 10 g of formic acid. They suffered oropharyngeal burns, which were only superficial, and they fully recovered. Two adults accidentally ingested formic acid, whilst 34 deliberately consumed it.
- Consumption, by 23 subjects, of between **5 and 30 g of formic acid** produced no deaths. The majority (16) developed minor superficial oropharyngeal burns only. Five had more severe symptoms including abdominal pain, vomiting, dyspnea and dysphagia, whilst two experienced sustained hematemesis and pneumonitis, and subsequently developed esophageal strictures.
- Ingestion of **30-45 g of formic acid** produced more serious effects. Of the six patients recorded, one died, one had reversible disseminated intravascular coagulation and three had reversible acute renal failure. All suffered hematemesis and had biochemical evidence of liver impairment. Four needed subsequent treatment for esophageal strictures.
- Ingestion of **45 to 200 g of formic acid** was recorded from 16 patients, of whom 14 died; two recovered. Considering the fatalities, the majority (9) died painfully within the first 36 hours from corrosive perforations of the abdominal viscera and from gastrointestinal hemorrhage. The other five developed acute renal failure which contributed to their death (BPD ID A6.12.2_05, FA_BPR_Ann_II_8_12_2_05).
- Systemic toxicity was seen after ingestion of 30 g formic acid or more.

Prognosis is poor after massive oral ingestion (>45 to 200 g formic acid); prognosis is moderate after moderate oral ingestion (approx. 30 to 45 g); lesions, but low mortality, are expected in most cases with low amounts ingested (<30g); persistent lesions due to tissue corrosion must be expected in cases with >10 g formic acid ingested. Tissue destruction of the gastrointestinal tract may result in fatal bleeding, septic shock, or stricture which may require surgical treatment. Reversibility of effects was often seen in cases with low amounts ingested (<10 g formic acid).

Dermal exposure

Due to the corrosivity of concentrated formic acid, local effects must be expected following contact to the skin and to the eyes.

Prognosis: Local burns heal only slowly. Tissue destruction of the skin may result in scarring.

Systemic effects may result after contact of concentrated formic acid to extended areas of the body surface (DocIIIA6.12.2_07, FA_BPR_Ann_II_8_12_2_07: Malizia et al., 1977; DocIIIA6.12.2_08, FA_BPR_Ann_II_8_12_2_08: Sigurdsson et al., 1983; DocIIIA6.12.2_09, FA_BPR_Ann_II_8_12_2_09: Chan et al., 1995).

Prognosis: Systemic effects were reversible within few days without sequelae in cases where the medical treatment was rapid and strict to counteract the metabolic acidosis.

Inhalation exposure

Due to the warning effect of the pungent smell of formic acid, inhalation exposure is generally low.

As **local effect,** pulmonary dysfunction was observed which was reversible within 14 days in one presumably high-dose case (DocIIIA6.12.2_10, FA_BPR_Ann_II_8_12_2_10: Yelon et al., 1996).

Inhalation of fumes created by mixing formic acid with concentrated sulphuric acid leads to injuries to the respiratory tract from formic acid, and deadly carbon monoxide intoxication (Bakovic et al., 2015; Lin & Dunn, 2014; Yang et al., 2008).

Systemic effects are unlikely to occur. An estimate that was presented in the MAK-justification indicated that the uptake of formic acid at the threshold exposure concentration (MAK-value: 5 ppm i.e. 9.5 mg/m³) equals approx. 0.5% of the metabolic rate observed in non-human primates. It was therefore concluded that an effect on the blood pH is unlikely. Formic acid inhalation concentrations from 30 ppm onwards were regarded as being immediately dangerous to life and health (DocIIIA6.12.8_01: Greim, 2003; NIOSH, 1990).

Aspects of diagnosis: Effective treatment requires an examination which provides adequate poisoning information. The case history provides information on the route of exposure and in some cases on the chemical concentration and amount. Clinical signs (mouth or skin affected) support this. The examination should generally comprise (1) and additionally (2) in cases of inhalation exposure:

(1) Blood pressure, blood count, hemolysis, blood gases, acid-balance, urine. Blood and urine formate concentrations.

(2) Inhalation (additionally): Chest radiograph, Lung function tests

First aid measures, therapeutic regimes

BPC-43-2022-07B

The primary goal must be to restore the metabolic acidosis to counteract the systemic toxicity. Second, the burns must be appropriately treated including the use of antibiotics. Special attention requires internal bleeding, due to local corrosion of the gastrointestinal tract after oral ingestion.

After suicidal exposures the doses are often extremely high, and there is no specific treatment in such cases.

Conclusion on prognosis: The prognosis depends on the exposure (concentration of chemical, amount, route of exposure), the rapid onset of treatment, the proper examination on admission to the hospital, and a strict treatment regimen to counteract systemic and local effects.

The prognosis may be good in cases of low oral, dermal, and inhalation exposure, as the systemic toxicity may be low. The prognosis of severe systemic toxicity is often bad. Tissue corrosion due to local effects heals slowly with scarring in most cases.

Conclusion used in Risk	Assessment – Further human data
Conclusion	Dermal exposure:
	Due to the corrosivity of concentrated formic acid, local effects must be expected following contact to the skin and to the eyes. Local burns heal only slowly. Tissue destruction of the skin may result in scarring. Systemic effects may result after contact of concentrated formic acid to extended areas of the body surface. Occupational and accidental dermal exposure records report skin corrosion and metabolic acidosis.
	Oral exposure:
	Due to the corrosivity of formic acid, local effects must be expected at all dose levels. The amount ingested and the concentration determine the grade and the location of the effects. Therefore, the observations range from moderate burns around the mouth to severe corrosion of the gastro-intestinal tract with destruction of the esophagus, perforation of the stomach, and corrosion of the small intestine together with massive bleeding and systemic toxicity (Systemic toxicity observed after ingestion of 30 g formic acid or more).
	Accidental and suicidal oral exposure records report reversible burns of the oesophagus after ingestion of small quantities (up to 10g). Consumption of between 5 and 30 g of formic acid led to minor superficial oropharyngeal burns or more severe symptoms including abdominal pain, vomiting, dyspnea and dysphagia, hematemesis and pneumonitis, and esophageal strictures. Doses up to 45 g formic acid were survived by most patients. The majority of patients died after doses between 45 – 200 g formic acid. Reported symptoms at high doses were corrosion of the gastro-intestinal tract, metabolic acidosis, haemolysis, loss of blood pressure, massive bleeding, hepatic and renal failure, and death.

Justification for the conclusion	Workplace measurements, health records from industry, case reports
	One accidental inhalation exposure record reported reversible Pulmonary dysfunction in the form of Reactive Airway Dysfunction Syndrome. Suicidal inhalation exposure records (mixing of formic acid with concentrated sulphuric acid to form carbon monoxide) report death due to CO intoxication alongside corrosion/irritation of skin, trachea, lungs, stomach due to formic acid fumes.
	Systemic effects are unlikely to occur. Workplace measurements showed mean values and 95% percentiles far below the threshold limit of 5 ppm or 9.5 mg/m ³ . Uptake of formic acid at this threshold exposure concentration equals approx. 0.5% of the metabolic rate observed in non-human primates. Therefore, an effect on the blood pH is unlikely. Formic acid inhalation concentrations from 30 ppm onwards are regarded as being immediately dangerous to life and health.
	Inhalation exposure:

Data waiving	Data waiving	
Information requirement	Epidemiological studies on formic acid	
Justification	None available	

3.15 OTHER DATA

Summary table of other data					
Type of data/ report, Reliability	Test substance	Observations	Reference		
Proposed acceptable residue levels	Residue definition: Group formic acid and ethyl formate	ADI 3 mg/kg bw/day	European Commission (2005) BPD ID A6.15.4_01a FA_BPR_Ann_II_8_16_1_01		
	Residue definition: Group formic acid and ethyl formate	ADI 3 mg/kg bw/day	JECFA (2003) BPD ID A6.15.4_01b FA_BPR_Ann_II_8_16_1_01		
	Formic acid, formate	No MRL set	EFSA (2009, 2014, 2015) FA_BPR_Ann_II_8_16_1_01 FA_BPR_Ann_II_8_16_2_0_JNS FA_BPR_Ann_II_8_16_3_0_JNS		

When applied as recommended by the biocidal use patterns, no prolonged continuance of formic acid residues on treated surfaces is expected, owing to the volatility of formic acid and the water solubility of the acid and its salts. After uptake, formic acid and formate is readily and completely metabolised with the consequence that no relevant residue quantities are found in meat, milk, eggs, honey, or other products in addition to naturally occurring trace amounts which result from the fact that formic acid does naturally occur in food and plants. Hence, the formate consumer exposure is not increased through the diet.

As to the animal health, formic acid and formate salts (FORMI[™] LHS, ammonium formate and sodium formate) showed a positive effect on the intestinal microflora which is beneficial for the treated animals. Therefore, formic acid and formate salts (FORMI[™] LHS and sodium formate) were proposed as feed additives. Formic acid, FORMI[™] LHS, and sodium formate are approved feed and drinking water additives, whereas ammonium formate was not approved because of the inevitable presence of formamide, a developmental toxicant, while formate was not considered to be problematic (EFSA, 2009; 2014, 2015; cf. outline further below).

BPC-43-2022-07B

The consumer average daily intake of formic acid with the natural food content was estimated to range between 0.1 to 0.43 mg/kg body weight.

Historically, higher intakes must be considered in those European countries where formic acid, or formate salts, was used as approved food preservative until 1998. A group ADI-value (Acceptable Daily Intake) of 3 mg/kg bw was established by JECFA for formic acid and ethyl formate in 1979 and maintained in 1997, and this value was adopted in the latest synoptic document of the EC updated in 2005.

Following ingestion formic acid distributes rapidly, and it is rapidly metabolised to CO₂. Further, it is required for the biosynthesis of purines and pyrimidines in the intermediary metabolism. In the case of unintentional uptake of residual product, no accumulation is expected as formic acid is rapidly removed from blood in all species that have been investigated.

Formic acid, FORMI[™] LHS, and sodium formate are approved feed and drinking water additives, and their use in feed (up to 12,000 ppm for pigs, 10,000 ppm for birds, ruminants, and other species) and drinking water (4,000 ppm) as specified in the Scientific Opinions is considered to be safe for the animals, the consumer, and the environment, whereas users might need protective measures (PPE: skin, eye, respiratory protection) because of the corrosivity of formic acid at concentrations >10%. The EFSA panel (FEEDAP) does not expect relevant residue levels and did not propose a MRL value (EFSA, 2009; 2014, 2015).

Conclusion:

When applied as recommended by the biocidal use patterns, no considerable potential or actual exposure of formic acid to animals and /or humans through diet or other means is expected.

Summary of S	Summary of Scientific EFSA Opinions pertaining to formic acid and its salts					
	EFSA (2009) No. 1315	EFSA (2014) No. 3827	EFSA (2015) No. 4113			
Reference No.	FA_BPR_Ann_II_8_16_1_01 FA_BPR_Ann_II_8_16_2_0_JNS FA_BPR_Ann_II_8_16_3_0_JNS					
Objective	Re-evaluation	Re-authorisation	Authorisation of new use			
Legal basis of evaluation	Request from BASF SE to the EU Commission; technical dossier obtained directly from BASF SE	Request from ACIAC-EEIG consortium to the EU Commission; technical dossier obtained directly from the applicant.	Request from FEFANA/HYFAC to the EU Commission; technical dossier obtained directly from the applicant.			

Trade name	FORMI [™] LHS	Formic acid	Not appropriate
Chemical	Potassium diformate, min. 98%	Formic acid, min 84.5%	Formic acid min. 84.5% Ammonium formate; min 35%(liquid) Sodium formate min 98% (solid); min 15% (liquid)
Formula	(КСООН*НСООН)	НСООН	HCOOH NH₄COOH NaCOOH
Contains	Formic acid, formate	Formic acid	Formic acid, formate salts
Intended use	Feed additive for sows. 0.8 – 1.2% in feed	Feed additive (pigs 1.2%, poultry1%, ruminants 1%; all other species 1%) Drinking water 0.4%	Feed additive Formic acid: all species except pigs; 1% in feed Formic acid: pigs; 1.2 % in feed Ammonium formate: all species except pigs; 1% in feed Ammonium formate: pigs; 1.2 % in feed Sodium formate: all species except pigs; 1% in feed Sodium formate: pigs; 1.2 % in feed
Conclusions of safety evaluation	Safe at a max. dose of 1.2% in feed (12,000 ppm); MoS = 4	Safe doses: up to 1.2% in feed. No MoS identified.	Safe doses: up to 1.2% in feed. No MoS identified. Ammonium formate: unsafe, due to inevitable presence of formamide (developmental toxicant)
Livestock	Well tolerated by sows; no adverse effects up to 1.2% in feed.	Safe doses: Pig: 1.2% Poultry, ruminants: 1% Other species: 1% (extrapolation)	Safe doses: Pig: 1.2% (both formic acid and sodium formate) Poultry, ruminants: 1% (both formic acid and sodium formate) Other species: 1% (extrapolation; both formic acid and sodium formate)
user	FORMI LHS is an eye irritant. Requires protection measures.	Safe concentrations > 10% considered to be corrosive to skin and eyes. Volatile liquid. Inhalation exposure and exposure of skin and	Formic acid: cf. EFSA (2014) No. 3827 Sodium formate: mildly irritating to the skin. Safe handling ma yrequire PPE.

		eyes present a risk for unprotected workers	Formic acid, sodium formate, ammonium formate were all considered to be skin sensitizers due to the lack of data (cf. remark 3 in last line)
consumer	Safe. No consumer formate exposure expected, due to rapid and complete metabo-lism in the pig.	Safe. No contribution to consumer exposure, due to rapid turnover and no accumulation	Safe ((both formic acid and sodium formate). No contribution to consumer exposure, due to rapid turnover and no accumulation
environment	Safe, when used as intended	Safe, when used as intended	Safe, when used as intended
microbiology	MIC values for Gram-positive and Gram-negative bacteria in the range 0.2-0.4%. No incidence of resistance to formic acid has been recorded until now.	MIC values not reported	MIC values mentioned but no details reported
Efficacy	Given at 1.2 % in feed	Recommended concentrations inhibit bacterial growth in feedingstuffs, drinking water, and in silage.	
MRLs (max. residue levels)	None definded. No negative effect on meat quality at proposed dose.	None definded. No negative effect on meat quality at proposed dose.	
Remark 1		ACIAC-EEIG consortium liquidated and rights transferred to FEFANA (includes Addcon Nordic SA; BASF SE; Kemira Oyj Pestorp AB; Selko BV)	FEFANA/HYFAC members: Kemira Oyj; Perstorp AB; Selko feed Additives; Andres Pintaluba; BASF SE; Anitox Ltd.
Remark 2			Formic acid: conclusions from previous opinion reiterated.
Remark 3			Formic acid, sodium formate, ammonium formate were all considered to be skin sensi-tizers due to the lack of data.

	It should be noted that formic acid was negative in a valid Buehler test, and that potassium formate was also negative in a valid assay. This result can be read across to sodium formate. Apparently, the applicants did not present data on this endpoint.
--	--

Conclusion used in Risk	Assessment – Other data
Conclusion	An ADI has previously been set at 3 mg/kg bw/day. No further data on residues on the treated or contaminated food or feeding stuffs including kinetics of disappearance are needed.
Justification for the conclusion	When applied as recommended, neither prolonged remain of formic acid residues in food or feeding stuffs nor significant exposure to animal or human is expected, due to volatilisation, wash-off, and rapid and complete metabolism. The EFSA Feed additive panel (FEEDAP) shares this opinion and concludes the use of feed additives containing formic acid or formate salts is safe for the consumer, the animals, and the environment in three Scientific Opinions.

4 ENVIRONMENTAL EFFECT ASSESSMENT

In aqueous solution and at neutral pH, formic acid and water-soluble formate salts dissociate and are present as the formate anion in solution. Based on this, it is deemed justified to include studies conducted with water-soluble formate salts in the evaluation of the environmental effects of formic acid.

4.1 FATE AND DISTRIBUTION IN THE ENVIRONMENT

4.1.1 Degradation

4.1.1.1 *ABIOTIC DEGRADATION*

4.1.1.1.1 Hydrolysis

The hydrolytic stability of formic acid at pH 4, 7 and 9 was investigated in a study following OECD 111, covering also Directive 92/69/EEC C.7 and US EPA OPPTS 835.2110.

The test item was dissolved in 50 mL of appropriate buffer solutions to give a final concentration of 400 mg a.i./L. The solutions were incubated at 50 °C and aliquots were taken after certain intervals and analysed in a modular HPLC system with UV/vis detector. After 5 days (120 h) the test was terminated since no hydrolysis was observed at any pH (preliminary test). At test end about 100 % recovery of the parent compound was reached at pH 4, 7, and 9

Conclusion:

Formic acid is considered to be hydrolytically stable, independent of the pH.

Summary table - Hydrolysis							
Method, Guideline, GLP status, Reliability	рН	Temp. [°C]		Half-life, DT ₅₀ [d]	Coefficient of correlation, r ²	Remarks	Reference
OECD TG 311; Directive	4	49.9 ± 0.5 °C	8.7 mmol/L (400 mg a.s./L)	> 1 year	Not applicable	/	BPD ID A7.1.1.1.1 01
92/69/EEC,	7		(400 mg a.s./L)				Doc IIIA JOINT:
C.7; US EPA	9						FA_BPR_Ann_II_10_1_1_1_a

200 / 411

OPPTS 835.2110			
(Hydrolysis as a function of pH);			
GLP-study; Reliability 1			

Converted to environmentally relevant conditions (pH 7; 12 °C) the DT50 value becomes > 20.7 years (Guidance on BPR: Volume IV Environment Parts B+C (Version 2.0 October 2017), Equation 28).

Value used in Risk Assessment				
Value/conclusion	DT50 > 1 year (pH 4, 7 and 9; 49.9±0.5 °C) DT50 > 20.7 years (pH 7; 12 °C)			
Justification for the value/conclusion	According to Guideline OECD 111 a substance is considered hydrolytically stable if, in the preliminary test at 50 °C, less than 10 % of hydrolysis is observed after 5 days.			
	No additional testing is required at this point.			
	Conversion of DT50 value to 12 °C using Equation 28 of the Guidance on BPR: Volume IV Environment Parts B+C (Version 2.0 October 2017), Equation 28.			

4.1.1.1.2 Phototransformation in water

No new data was submitted for this endpoint, instead a justification for non-submission based on other available data (literature) was submitted (*Doc IIIA JOINT: FA_BPR_Ann_II_10_1_1_1_b*).

Direct photolysis

According to the HSDB database (available online at <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u>) formic acid does not absorb at wavelengths > 290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight.

Phototransformation with OH-radicals in water

From the literature (Buxton et al., 1988, BPD ID A7.1.1.1.2_01), a rate constant (k) for the reaction of formic acid and the formate ion with OH-radicals in water were compiled:

BPC-43-2022-07B

рН	Molecule	Rate constant (k) [L/mol*sec]
0.4 - 1.0	Formic acid (HCOOH)	4.4 x 10 ⁵
7.0 - 13.5	Formate ion (HCOO ⁻)	2.1 x 10 ⁸

In order to be able to derive half-lives from these data, hydroxyl-radical concentrations in water have to be assumed. This is also derived from literature (Zepp et al., 1987, BPD ID A7.1.1.1.2_02), wherein it is described that for the small lake Greifensee in Switzerland, the average OH-radical concentration over the whole water column (14 m) over the whole year is 3.0×10^{-18} mol/L. From this, a half-life for aquatic photolysis can be calculated for the formate ion, which is the relevant form of formic acid in water, of approximately 35 years (34,89 years).

Phototransformation with NO₃-radicals in water

At pH 5 – 9, the rate coefficients for the aqueous reactions of NO₃ with HCOO⁻ at 25 °C were experimentally determined to range from $4.7 \pm 0.6 \times 10^7$ to $5.0 \pm 0.4 \times 10^7$ L/mol*sec. With formic acid the rate constant was $3.3 \pm 0.4 \times 10^5$ L/mol.sec at pH 0.5 and 25 °C. The differences in reactivity of the anion HCOO⁻ compared to HCOOH were explained by the higher reactivity of NO₃ in the charge transfer processes compared to H-atom abstraction (Exner et al., 1994, BPD ID A7.1.1.12_03).

Transformation products

Formic acid is a simple C1-molecule which can be degraded chemically to innocuous substances in most environments.

Value used in Risk Assessment		
Value/conclusion	 Direct photolysis: not expected Photo-oxidation with OH-radicals in water: DT₅₀ HCOO⁻ = 35 years 	
Justification for the value/conclusion	The information submitted by the applicant was deemed sufficient. Phototransformation will not likely play a role in the degradation of formic acid in the environment.	

4.1.1.1.3 Estimated photo-oxidation in air

According to the HSDB database (available online at <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u>) formic acid does not absorb at wavelengths > 290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight.

The photo-degradation of formic acid in air was estimated through the modelling program AOP v1.91, included in the EPISUITE program developed by US EPA.

For a 12-hour day, with an OH-radical concentration of 1.5 x 10⁶ OH/cm³, a half-life of 20.6 days or 493.7 hours was estimated.

For a 24-hour day, with an OH-radical concentration of 0.5 x 10⁶ OH/cm³, a half-life of 30.9 days or 740.5 hours was estimated.

Summary ta	Summary table – Photo-oxidation in air								
Model				Half-life [hr]	Reference				
AOP v.1.91	/	0.5x10 ⁶	5.2 x 10 ⁻¹³	740.5	BPD ID A7.3.1_01 Doc IIIA JOINT: FA_BPR_Ann_II_10_3_1				

Furthermore, according to §2.3.6.3 of the Guidance on the BPR: Volume IV Part B on photochemical reactions in the atmosphere, the pseudofirst order rate constant in air can be calculated using the following:

 $kdeg_{air} = k_{OH} \times OHCONC_{air} \times 24 \times 3600$

 $\Leftrightarrow kdeg_{air} = 5.2 \cdot 10^{-13} \times 5 \cdot 10^5 \times 24 \times 3600$

 $\Leftrightarrow kdeg_{air} = 0.0225d^{-1}$

In a monograph on kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds (Atkinson., 1989, BPD ID A7.3.2_01), a unit-weighted average of the rate constants reported in different sources results in a recommended rate constant of 4.5×10^{-13} cm³/mol.sec for formic acid. From this, using the same formula as above, a degradation half-life of 35.7 days or 855.7 hours can be derived.

The latter derived half-life will be used for further risk assessment purposes, since it is more conservative than the half-life estimated through the AOP program.

Value used in Risk Assessment					
Value/conclusion	DT ₅₀ = 855.7 hours Formic acid is only moderately subjected to photodegradation				
Justification for the value/conclusion	The information submitted by the applicant was acceptable.				

4.1.1.2 **BIOTIC DEGRADATION**

4.1.1.2.1 Biodegradability (ready/inherent)

Four studies are available on the aerobic biodegradation of formic acid in fresh water. All four tests document on ready biodegradability.

Two identical studies were performed by (1988a/b) on formic acid, both using the modified OECD screening test (OECD 301E).

In both tests 20 mg DOC/L of test substance was inoculated with 0.5 ml effluent per litre medium (composition according to OECD). The mixture was aerated in the dark or diffuse light at room temperature (22°C±2 °C). A reference substance (sodium benzoate; 20 mg/I DOC) was tested in parallel. Both tests were performed in duplicate.

In the first test (BPD ID A7.1.1.2.1_01), samples were taken on day 0, 1, 7, 10, 13 and 14, while in the second test (BPD ID A7.1.1.2.1_02) samples were taken daily, to measure the DOC concentrations with an oxygen electrode.

In the first tests, 4 additional controls were run next to the test substance and reference substance: a control without test substance (blank), a control with reference substance, an abiotic control and a toxicity control. In the second test, the abiotic and toxicity control was omitted, which can be seen as a deficiency.

For the first test, 90-100% of the initial formic acid (20 mg/L DOC) was eliminated from water after 14 days. The 10-day window was reached.

For the second test, 99 % of the intial formic acid (20 mg/L DOC) was eliminated from water after 11 days, also reaching the 10-day window.

With these results, both tests indicate that formic acid is readily biodegradable.

Belgium

PT4

BPC-43-2022-07B

The third and fourth ready biodegradability test are both closed bottle tests (OECD 301D) performed with potassium formate, for which the formate ion is representative for formic acid in water.

The oldest test (1992a, BPD ID A7.1.1.2.1_03) was performed according to the principles of GLP.

In this study the test substance and reference substance (sodium benzoate) were tested at respective concentrations of 18 and 3 mg/L. BOD bottles of 250 mL were filled with a standard nutrient medium, the test substance or reference substance and 1 drop/L of activated sewage sludge bacteria. Samples were taken after days 0, 5, 15 and 28 to measure the BOD with an oxygen electrode. Additionally, a blank control, an inoculum control and an inhibition control were run in parallel. The test was performed at 20 °C in a water bath and was performed in duplicate.

92 % of the initial test substance concentration was eliminated from water after 28 days.

Between day 5 (15 % degradation) and day 15 (90 % degradation) more than 60 % degradation related to ThOD was observed. The 14-day window was met.

The second closed bottle test (2000, BPD ID A7.1.1.2.1_04) confirmed the results of the first study, albeit not being GLP. In this study the test substance and reference substance (aniline) were tested at respective concentrations of 20 and 1.95 mg/L. The preparation of the BOD bottles was identical to that in the first test and samples were taken at appropriate intervals (days 0, 2, 5, 7, 9, 12, 14, 16, 22 and 28) to measure the BOD with an oxygen electrode. Additional controls, such as in the first test, were run in parallel.

82 % of the initial test substance concentration was eliminated from water after 28 days.

Between day 2 (10 % degradation) and day 9 (75 % degradation) more than 60 % biodegradation related to ThOD was observed. The 14-day window was met.

Conclusion:

Overall, considering the 4 ready biodegradability tests performed with the active substance, it can be concluded that Formic Acid is readily biodegradable.

Further screening tests on inherent biodegradability are deemed unnecessary (applicant justification *Doc IIIA JOINT: FA_BPR_Ann_II_10_1_1_2_b*).

Summary table - biodegradation studies (ready/inherent)								
			Inoculum			Degradation		Reference

Method, Guideline, GLP status, Realibility	Test type 1	Test paramete r	Туре	Concen tration	Adap tatio n	Addition al substrat e	Test sub- stance concent r.	Incuba- tion period	Degre e [%]	Remark s	
Modified OECD Screening Test, 79/831/EE C, Annex V, C3; non-GLP	Read y	DOC	Effluent municip al STP (lab. culture)	0.5 mL (total batch volume: 900 mL)	no	no	Formic acid; 20 mg DOC/L	28 (terminate d after day 14)	90-100 10-day windo w passed		1988a BPD ID A7.1.1.2.1_01 Doc IIIA JOINT: FA_BPR_Ann_II_10_1_1_2_a_1
study, Reliability 2											
Modified OECD Screening Test, 79/831/EE C, Annex V, C3; non-GLP,	Read y	DOC	Effluent municip al STP (lab. culture)	0.5 mL (total batch volume: 900 mL)	no	no	Formic acid; 20 mg DOC/L	28 (terminate d after day 11)	99 10-day windo w passed		1988b BPD ID A7.1.1.2.1_02 Doc IIIA JOINT: FA_BPR_Ann_II_10_1_1_2_a _2
Reliability 2 Closed	Read	BOD	Activate	1	no	Nutrient	Potassiu	28	92		1992a
Bottle Test, OECD TG 301D,	у		d sewage sludge of municip	drop/L		medium	m formate; 18 mg/L	(90% removal after 15 days)	14-day windo w		BPD ID A7.1.1.2.1_03 Doc IIIA JOINT: FA_BPR_Ann_II_10_1_1_2_a _3
GLP			municip						passed		

Reliability 1			al STP							
Closed Bottle Test, OECD TG 301D, non-GLP, Reliability 2	Read y	BOD	Activate d sludge cultivate d on synth. sewage; supplied w. domes. sewage 5 d prior to start	6.8*10 ⁵ CFU/L (hetero- trophic bacteria)	no	Nutrient medium	Potassiu m formate; 20 mg/L	28 (75% removal after 9 days)	82 14-day windo w passed	2000 BPD ID A7.1.1.2.1_04 Doc IIIA JOINT: FA_BPR_Ann_II_10_1_1_2_a _4
¹ Test on inh	erent o	or ready biod	degradabili	ty accordi	ng to O	ECD criteria				

Value used in Risk Assessment					
Value/conclusion	Ready biodegradable (meeting the 10 or 14-day window)				
Justification for the value/conclusion	Based on the available studies, formic acid is well within the pass levels of 70 % DOC and 60 % ThOD removal.				
	The 10-day or 14-day window (depending on test-type) is met each time.				

4.1.1.3 **R**ATE AND ROUTE OF DEGRADATION INCLUDING IDENTIFICATION OF METABOLITES AND DEGRADATION **PRODUCTS**

4.1.1.3.1 Biological sewage treatment

4.1.1.3.1.1 Aerobic biodegradation

Data waiving	
Information requirement	A justification of non-submission of data was submitted by the applicant (<i>Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_1_a</i>), based on the fact that such a test is not a core data requirement and that submitted studies showed formic acid to be ready biodegradable.
Justification	Justification is accepted.

4.1.1.3.1.2 Anaerobic biodegradation

A study on the acclimation and degradation of petrochemical wastewater components by methane fermentation was submitted for this data point (Chou et al., 1979, BPD ID A7.1.2.1.2_01). The study dates from 1979 and does not follow a known guideline or is performed according to GLP.

Hungate serum bottles were filled with water and displaced with an inert gas mixture of CO₂ and CH₄. A 50 mL inoculum of acetate enriched cultures (1000 mg/L SS, laboratory culture if domestic sludge fed with acetate for years) was injected into the bottle, together with 100 mL of acetate and 25 mg of test substance (formic acid, amongst others).

Gas production was monitored and test substance was injected with a microliter syringe as needed.

For formic acid, the test showed 89 % of substrate removal after a lag time of 4 days. An overall degradation rate of 286 mg/L.day was established.

Summary table - STP anaerobic biodegradation								
			Inoculum			Degradation		Reference

BPC-43-2022-07B

e, GLP status, Reliabilit Y		paramet er		tration	tatio n	al substrat e	substanc e concentr	n period	e [%]	S	
	juideline anaerobi	CH4 evolution	Acetate enriche d cultures (lab. cult.	1000 mg /L SS	no	Acetate		unknown (up to 30 days)	89		Chou et al., 1979 BPD ID A7.1.2.1.2_01 Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_ 1_b
Reliability 4			domesti c sludge))				

The BE eCA assigns a reliability of 4 to this test, since the test report contains insufficient details. Therefore the results of this test can only be considered as indicative.

The test did not follow an official guideline and contains insufficient details in order to assess whether it could be compared to one.

The applicant was asked if they could provide further information, but they could not and accepted the reliability of 4 assigned by the BE eCA.

Since the anaerobic biodegradation is not a strict data-requirement, further testing was not deemed necessary.

Value used in Risk Assessment						
Value/conclusion	Indication that anaerobic degradation may be possible					
Justification for the value/conclusion	Test report contains insufficient details, does not follow a known guideline and was not performed according to GLP.					
	Since this endpoint is not strictly a data requirement, no new testing is required at this point.					

4.1.1.3.1.3 STP simulation test

Data waiving	
Information requirement	A justification of non-submission of data was submitted by the applicant (<i>Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_1_a</i>), based on the fact that such a test is not a core data requirement and that other submitted studies showed formic acid to be ready biodegradable.
Justification	Justification is accepted.

4.1.1.3.2 Biodegradation in freshwater

4.1.1.3.2.1 Aerobic aquatic degradation

Data waiving	
Information requirement	A justification of non-submission of data was submitted by the applicant (<i>Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_2_a</i>), based on the fact that such a test is not a core data requirement and that other submitted studies showed formic acid to be ready biodegradable.
Justification	Justification is accepted.

4.1.1.3.2.2 Water/sediment degradation test

Data waiving	
Information requirement	A justification of non-submission of data was submitted by the applicant (<i>Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_2_b</i>), based on the fact that such a test is not a core data requirement and that other submitted studies showed formic acid to be ready biodegradable.
Justification	Justification is accepted.

4.1.1.3.3 Biodegradation in seawater

4.1.1.3.3.1 Seawater degradation study

One test to assess the biodegradability in seawater was submitted (Drake, 1994, BPD ID A7.1.1.2.3_01) (*Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_3*). The test was supposedly performed according to OECD guideline 306 and according to the GLP principles, using potassium formate liquor (i.e. potassium formate 75% in water) as test material.

In a closed bottle test, potassium formate liquor was tested at a concentration of 15 mg/L. Sodium acetate was used as a reference substance. The inoculum was a non-specific mixture of marine microbiota, collected in the field.

The percentage biodegradation was determined by comparing the oxygen depletion value (BOD) with the corresponding Theoretical Oxygen Demand (ThOD), which was calculated as 143 mg O_2/g potassium formate liquor. Samples for oxygen analysis were taken at day 0, 7, 14, 21 and 28.

The test concludes that after 28 days 71.3 % of the initial test substance concentration was eliminated. The 60 % mark was reached between days 0 and 7, with 61.5 % degradation at day 7.

BE eCA is however of the opinion that the test report for this test is severely lacking in details. It is unclear what the exact empirical formula of the test material is to arrive at the calculated ThOD of 143 mg/g. Nor are details on for example the number of repetitions, whether or not a blank control was tested, the reason why a larger concentration than the concentration range suggested in the guideline determinable from the original test report. Merely a statement that the test was performed according to OECD 306 seems insufficiently reliable.

Therefore, BE eCA assigns a reliability 4 to this test, which render its result unusable for further risk assessment purposes.

The applicant was asked if they had any more information on this particular study, but the answer thus far was negative and the applicant accepted the reliability assessment made by BE eCA.

Since this endpoint is not a core data requirement, new testing is not required at this time.

Value used in Risk Assessment							
Value/conclusion No value from this test is retained for the risk assessment							
Justification for the value/conclusion	The test report was deemed too summarily to retain the results as a key value. However, at this point, no further testing is required on the basis that such a data point is not a core data.						

4.1.1.3.4 Higher tier degradation studies in water or sediment

No available data.

4.1.1.3.5 Biodegradation during manure storage

A study on the characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion (Page et al., 2014, Doc IIIA FA_BPR_Ann_II_10_1_3_4) and a study on changes in swine manure during anaerobic digestion (Iannotti et al., 1979, Doc IIIA FA_BPR_Ann_II_10_1_3_4_Iannotti_1979) are submitted for this data point.

In Page et al. (2014), raw dairy manure and raw dairy manure amended with pre-consumer waste were incubated in reactors without aeration and stirring of the manure; thus simulating storage conditions of manure. Formic acid was not added to the manure samples, but the course of the naturally occurring formic acid was monitored over a period of 100 days at 20 °C. The two types of manure were incubated in duplicate reactors. The reactors were sampled every seven days from the top and the bottom layer. The top layer represents aerobic conditions, while the bottom layer is characterized by anaerobic conditions.

In both manure types the degradation of formic acid could be observed. However, there were also phases were the concentration of formic acid was increasing. These fluctuations can be explained by the degradation of other volatile fatty acids and/or other organic substances, which can lead to the formation of formic acid. Over the last 3 to 5 weeks either formic acid was no longer formed or the degradation activity was equal to the formation rate of formic acid as the observed concentrations were at 0 mg/L.

The study shows that formic acid is degraded under aerobic and anaerobic conditions in manure samples (raw dairy manure and amended dairy manure). Based on the graphical representation of the concentration trends, a DT_{50} for the aerobic top layer of \leq 7 days and \leq 10.5 days for the anaerobic bottom layer can be derived for wet manure storage.

Iannotti et al. (1979) investigated changes in swine manure during anaerobic digestion. Swine manure was digested in pilot-size digesters (0.42 m^3) which had been in operation for one year. The loading rate was 3.78 g volatile solids (VS)/L/d. The influent waste was from finishing hogs. The digester temperature was 35 °C. The detention time was 15 days.

The digester was fed swine manure with a total of 4.7 ± 0.6 g/d (= influent). Based on an influent volume of 28.2 L, this results in a concentration of 167 mg/L of formic acid in the swine manure. In the effluent no formic acid was detected which is a removal of 100%. Based on the complete removal of formic acid from the influent and its retention time in the digester, a conservative DT50 of 7.5 days can be deduced.

Summary table – Biodegradation during manure storage									
			Inoculum			Degradation		Reference	

Method , Guideli ne, GLP status, Reliabil ity	Test type ¹	Test paramete r	Туре	Conce n- tratio n	Ada p- tatio n	Additio nal substra te	Test substan ce concent r.	Incubati on period	Degree [%]	Remar ks	
No guidelin e ² (reactor s without aeration and stirring) Non-GLP Reliabilit y 2	no harmonis ed guideline available	Concentrat ion of formic acid	Raw dairy manur e: R1 & R2 Dairy manur e (90.1 %) mixed with blood (5.9%) and trap (4.0%): R3 & R4	N/A	N/A	N/A	Formic acid naturally present in manure samples. R1 & R2: < 850 mg/L R3 & R4: ≤ 27 100 mg/L	98 days (at 20 °C)	100 (measured concentrat ion of 0 mg/L)	N/A	Page et al., 2014 <i>Doc IIIA JOINT:</i> <i>FA_BPR_Ann_II_10_1_3_4</i>
No guidelin e ² (anaero bic pilot- size	no harmonis ed guideline available	Concentrat ion of formic acid	Swine manur e from finishi ng hogs	N/A	N/A	N/A	Formic acid naturally present in manure samples	22 weeks (at 35 °C)	100	N/A	Iannotti et al., 1979 Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_4_Iann otti_1979

BPC-43-2022-07B

digester)				: 167 mg/L					
Non-GLP									
Reliabilit y 2									
¹ Test according to OECD criteria ² No harmonised guideline available									

Page et al. (2014) is selected as key study. Justification on the use of this study as key study is provided in *Doc IIIA JOINT: FA_BPR_Ann_II_10_1_3_4.*

At ENV WG-I-2022, it was agreed that the DT50 of 10.5 days (at 20°C), derived based on cattle manure can be used also for all other animal categories. This DT50 value is derived based on cattle manure (Page et al., 2014) and confirmed for pigs manure (Iannotti et al., 1979). No data is available for poultry manure. However, poultry manure has another consistency compared to cattle and pigs manure and is much dryer. Degradation in such kind of manure tend to be aerobic, in which case the DT50 values are expected to be covered by the DT50 value of 10.5 days (20 °C). Indeed, according to OECD ESD No. 14 (OECD, 2006), DT50 values for degradation in soil can be used as a surrogate for degradation in manure when no other data are available. In the case of poultry manure (aerobic degradation) this would yield a DT50 value of 1 day (see section 4.1.1.3.6 of the CAR).

The swift anaerobic degradation of formic acid in manure is not surprising. Formic acid is the simplest carboxylic acid and is a natural compound occurring at significant concentrations in all environmental compartments (please refer to section 4.3 of the CAR). Several lines of evidence are available to confirm anaerobic degradation. Section 4.1.1.3.1.2 of the CAR (STP anaerobic degradation) contains the study of Chou et al. (1979). Although the publication was rated a reliability of 4, the data indicate that anaerobic degradation of formic acid occurs. In the publication of Page et al. (2014) is stated that methanogens can directly use formic acid. The publication of Héllsten et al. (2005b, see next section), studying aerobic and anaerobic degradation of formate in soil at low temperatures, concludes that [...] there is a potential for swift aerobic and anaerobic biodegradation of formate in the subsurface of the study site, which is hardly surprising as formate can be utilized by a wide variety of aerobic, facultative, and anaerobic microorganisms.

Value used in Risk Assessment								
Value/conclusion	DT_{50} for biodegradation in manure: \leq 10.5 days (20 °C) DT_{50} for biodegradation in manure: \leq 19.9 days (12 °C)							
Justification for the value/conclusion	Value derived from the graphical representation of concentration trends of formic acid in manure at anaerobic conditions (bottom of reactor). Value agreed at ENV WG-I-2022.							

4.1.1.3.6 Biotic degradation in soil

According to the BPR, all tests on fate and behaviour are not part of the core data set. Requirements for such tests only come into play when there is exposure to soil.

For this dossier, the applicant waived all data referred to by BPR Annex II point 10.2. Since no direct exposure to soil is expected from the intended uses of formic acid in PTs 2, 3, 4, 5 and 6, and since formic acid is readily biodegradable, this waiving is accepted.

The applicant submitted nevertheless 3 open literature studies providing indication of rapid biodegradation of formic acid in soil.

- Lissner et al., 2014: Doc IIIA FA_BPR_Ann_II_10_2_a ;
- Hellstén et al., 2005a: Doc IIIA FA_BPR_Ann_II_10_2_b ;
- Hellstén et al., 2005b: Doc IIIA FA_BPR_Ann_II_10_2_c;
- Glanville et al., 2012 : Doc IIIA FA_BPR_Ann_II_10_2_d

Lissner et al. (2014) is a lysimeter experiment following the degradation of potassium formate executed in Norway. Formate is added to all of the lysimeters together with propylene glycol (PG) as part of a deicing solution in a ratio of 70 g/m² formate and 350 g/m² PG. Due to the presence of PG and the uncertainty to what extend this interferes with the natural fate and behaviour of formate in soil, this study is assigned a reliability of 3.

In Hellstén et al. (2005a), potassium formate was applied to the soil surface of a lysimeter in Finland. Application took place five times (0,68 kg/m² per application) during winter on the snow cover of a lysimeter. The lysimeters were composed of well-graded sand and gravel. The mean formate concentration entering the soil was calculated at 2730 mg/L. The percolated water was collected at 12 dates and analyzed for formate, CO_2 , TOC, COD, and other parameters.

The objective of this study was to examine the migration and degradation of potassium formate in the unsaturated zone of a lysimeter in a sandy aquifer in real winter and spring conditions.

The study concluded that formate was effectively removed in a sandy lysimeter after a cold winter period. The disappearance of formate was accompanied by the formation of carbon dioxide and bicarbonate in the percolating water indicating biodegradation of formate.

Hellstén et al. (2005b) investigated the degradability of sodium and potassium formate in soil under aerobic and anaerobic conditions in a set of microcosm experiments using radiolabeled sodium formate. Formate was shown to degrade under aerobic and anaerobic conditions from soil samples (top and subsurface). Given the differences in organic matter content, soil samples at different depths could be considered as Belgium

PT4

different soil types. Based on the graphical representation of the degradation data, a degradation half-life (DT_{50}) of < 1 day could be derived for all soil samples at temperatures of + 1 and +6 °C.

Glanville et al. (2012) investigated the overall relationship between laboratory-field and inter-annual field studies for mineralization of low molecular weight substrates in soil solution. Soil samples were spiked with 14C-labelled compounds, formic acid being one of the substances. The soil samples were taken from freely draining agricultural grassland from a hyper-oceanic climatic region in North Wales (UK) at a soil depth of 10 cm. Sampling was done in 2009 and 2010. The half-life of formic acid was determined under lab and field conditions to be \leq 1 day. This value was read from the graphs of the paper.

Sur	Summary table – Aerobic biodegradation in soil – laboratory study												
Method,		Test	Т	est systen	า		Test	Incubati	Degradat	Remarks	Reference		
Guidelin e, GLP status, Reliabilit Y		e ¹ parame ter Soil origin Soil type pH	рН	OM %		on period	ion DT50						
No guideline (microcos m experime nts using radiolabel ed sodium formate), Non-GLP, Reliability 2	Aerobic mineralisa tion in soil (no guideline, public literature data)	of added	Finland. Soil samples	sandy and gravelly deposits with occasiona I thin layers of silt		0.4 3 (70- 80 cm) ; 5.4 (5- 15 cm) ; 0.7 0 (50- 60 cm) ; 0.3		up to 45 days	< 1 day for all soil samples at +1 and +6 °C	low temperatu	Hellstén et al., 2005b <i>Doc IIIA JOINT : FA_BPR_Ann_II_1 0_2_c</i>		

BPC-43-2022-07B

						3 (10 0- 110 cm)					
No guideline (microcos m experime nts using radiolabel ed formic acid), Non-GLP, Reliability 2	literature	¹⁴ CO ₂	Abergwyngre gyn, Gwynedd, North Wales (53°14'N, 4°1'W)	sandy clay loam (rhizosph ere soil)	4.77- 5.35	7.3 7- 7.9 7	Formic acid, ¹⁴ C- labelled (Source: Sigma- Aldrich Company Ltd., UK): < 10 nM formic acid	168 h	< 1 day (20 °C)	Experime nts were performed in triplicate and in two subseque nt years (2009 and 2010).	
¹ Te	est according	to OECD o	criteria			•	•		•	·	

Summary table – Field dissipation studies										
Method, Guideline, GLP status, Reliability	Site	Applicati on rate	Surface	Soil type	Soil tex- ture	Test duratio n	Degra- dation DT50	Degra- dation DT90	Remarks	Reference
No guideline (lysimeter experiment with potassium formate),	Oslo airport, Norway	70 g/m ² potassium formate	not specified	Soil 1	silty and sandy deposi ts with low clay	2 years	not determin ed	not determin ed	Potassium formate was applied as part of a deicing solution with	Lissner et al., 2014 <i>Doc IIIA JOINT :</i> <i>FA_BPR_Ann_II_10_</i> <i>2_a</i>

BPC-43-2022-07B

Non-GLP, Reliability 3					conten t				polypropyle ne glycol.	
No guideline (lysimeter experiment with potassium formate), Non-GLP, Reliability 2	Southwestern Finland (Oripää lysimeter station, 60°55' N, 22°44' E)	Total potassium formate loading: 3.4 kg/m ² Substance applied by sprinkler irrigation over surface of one of the snow- covered lysimeter in five stages (0.68 kg/ m ² per application) between 19 Dec. 2001 and 04 March 2002	Surface covered with local vegetati on	Soil 2	well- graded sand gravel	7 months	not determin ed	not determin ed	Experiment conducted in cold climate conditions.	Hellstén et al., 2005a Doc IIIA Joint : FA_BPR_Ann_II_10_ 2_b
No guideline (polypropyle ne cylinders (6.1 cm ² soil surface) placed 2 cm deep in soil),		450 μL soil solution spiked with 50 μL ¹⁴ C-formic acid (< 10 nM	The vegetati on at the site consists of perennia	Soil 3 (freely draining agricultur al grassland from a	sandy clay loam	168 h	< 1 day (13.8-17 °C)	not determin ed	Experiment s were performed in triplicate and in two subsequent	Glanville et al., 2021 Doc IIIA JOINT : FA_BPR_Ann_II_10_ 2_d

BPC-43-2022-07B

Reliability 2 acid) grass oceanic and 2010). (Lolium climatic perenne region) and 2010). L.) and and 2010). and 2010).	Non-GLP,	formic I rye	hyper-	years (2009	
white clover (Trifoliu m repens L.) and is subject to intensive sheep grazing (>5 ewe ha ⁻¹) and receives regular fertilizer addition (120 kg N ha ⁻¹ y ⁻		acid) grass (Lolium perenne L.) and white clover (Trifoliu m repens L.) and is subject to intensive sheep grazing (>5 ewe ha ⁻¹) and receives regular fertilizer addition (120 kg	climatic region)	years (2009 and 2010).	

Based on the overall evidence available in public literature, it can be concluded that formic acid is expected to rapidly biodegrade in soil, even in sub-optimal conditions (low temperatures), and a DT50 for biodegradation in soil of < 1 day can be derived from the available data. Furthermore, it should be noted that in both Hellstén et al. (2005b) and Glanville et al. (2012), mineralisation was measured, meaning that the DT50 for biodegradation might be even more rapid.

Formic acid is the simplest carboxylic acid and is a natural compound occurring at significant concentrations in all environmental compartments (please refer to section 4.3 of the CAR), and can be utilized by a wide variety of aerobic, facultative, and anaerobic microorganisms (Hellstén et al. (2005b)).

BPC-43-2022-07B

None of the studies fulfil all conditions of the Guidance on the BPR: Volume IV Part A (version 1.2 May 2018), section 1.2 paragraph 12 specifying the conditions for public literature data to be considered as key studies. However, given the fact that:

- Hellstén et al. (2005b) and Glanville et al. (2012) use radiolabeled test material from a well-defined source for which a high purity can be assumed;
- the reference specification of formic acid doesn't contain relevant impurities;
- Hellstén et al. (2005b) investigated biodegradation in different soil layers with different organic matter contents, which could be considered as different soil types;

it was agreed at ENV WG-I-2022 to consider Hellstén et al. (2005b) and Glanville et al. (2012) as key studies and to use a DT50 value for soil of 1 day at 12 °C for the exposure assessment.

Value used in Risk Assessment							
Value/conclusion	DT50 value for soil of 1 day at 12 °C						
Justification for the value/conclusion	Value agreed at ENV WG-I-2022.						

4.1.2 Distribution

4.1.2.1 **ADSORPTION ONTO/DESORPTION FROM SOILS**

The adsorption coefficient (Koc) on soil and sewage sludge of formic acid was investigated in a HPLC screening test following OECD 121. The method of analysis was a modular HPLC system with UV/VIS detector under isocratic conditions (2002, BPD ID A7.1.1.1.1_01) (*Doc IIIA JOINT: FA_BPR_Ann_II_10_1_2*).

Ten reference compounds were used for the calibration graph. Small amounts were dissolved in 30 vol% acetonitrile (ultrasonic treatment) and the flasks were made up to volume with water. The dead time (t_0) of the HPLC system was measured with formamide. Measurements of the retention times of the reference substances and of formic acid were performed in duplicate at 23 °C.

As formic acid is an ionisable substance with a pKa of 3.70 (Dolich 2007, BPD ID A3_01), two tests were performed with both non-ionised and ionised forms in appropriate buffer solutions (pH 4 and 10). The test item was dissolved in water/acetonitrile (9:1, v/v).

In the test run with the non-ionised formic acid (acidic conditions) the mean retention time (2.1 min) was shorter than the lower limit of the reference interval (acetanilide, 3.5 min) and shorter than the dead time established with formamide (2.2 min). Normally, the OECD test guideline indicates that if the log Koc of the test substance falls outside the calibration interval, the test should be repeated using more appropriate reference substances. However, in this case, the retention time of formic acid is also below the dead time, determined by using a substance (formamide) that does not react with the column, and thus does not have a tendency to adsorb. Knowing this, it can be concluded that formic acid also does not have a tendency to adsorb. For risk assessment purposes, the log Koc could be set to be smaller than that of the lower limit of the reference interval, being 1.25 for acetanilide.

In the test run with the ionised molecule under basic conditions (formate ion) there were no results on retention time at the end of the test, meaning that its retention time is longer than the upper limit of the reference interval (methiocarb, 9.1 min). In this case, the log Koc of formate is higher than 3.10. Sorption of the ionised form of formic acid is thus stronger than that of the non-ionised form, and the log Koc of formic acid of therefore depends on the pH.

It should be noted that the HPLC screening method is not suitable for the estimation of the Koc of formic acid. OECD Test Guideline No. 121 "Estimation of the Adsorption Coefficient (Koc) on Soil and on Sewage Sludge using High Performance Liquid Chromatography (HPLC)" states that the method may not work for moderate organic acids and that only log Koc values ranging from 1.5 to 5.0 can be determined. As both forms of formic acid, the protonated as well as the unprotonated, are not in the time range of the calibrated substances, no further conclusions can be derived.

In addition to this HPLC-method provided by the applicant, BE eCA used the screening programme EPI Suite 4.1 to estimate the Koc based on the structure of formic acid. KOCWIN v2.00, a subprogram included into EPI Suite to estimate the Koc, uses two different models to make an estimation. On the one hand, the Sabljic molecular connectivity method (MCI), estimates a Koc for formic acid of 1 L/kg (log Koc = 0). On the other hand, the program calculates the Koc based on the log Kow. When using the programs default log Kow of -0.54 (experimental database),

BPC-43-2022-07B

a Koc of 0.7195 L/kg is calculated (log Koc = -0.143). The applicant also submitted a study in which a log Kow is experimentally derived (., 2002, BPD ID A7.1.1.1.1_01). When using this log Kow of -2.1 (pH 7), the program calculated a Koc of 0.09866 L/kg (log Koc = -1.00586).

However, given the pKa 3.70 for formic acid, the environmental relevant species is not formic acid but the formate ion. Franco et al. (2009) developed a method to estimate the Koc of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pKa) and the octanol–water partition coefficient of the neutral molecule (log P_n). The pH-dependent estimation of Koc is provided by the following equation:

 $K_{\rm OC} = \frac{10^{0.54 \cdot \log P_{\rm n} + 0.11}}{1 + 10^{(\rm pH_{\rm soil} - 0.6 - \rm pK_{\rm a})}} + \frac{10^{0.11 \cdot \log P_{\rm ion} + 1.54}}{1 + 10^{(\rm pK_{\rm a} - \rm pH_{\rm soil} + 0.6)}}$

where pK_a is the dissociation constant; log P_n the octanol-water partition coefficient of the neutral molecule; and pH_{soil} the pH of the soil.

(note: the equation contains a typo error in the second term: log P_{ion} should be log P_n)

No pH_{soil} is defined in Table 3 (Definition of the standard environmental characteristics) of the Guidance on BPR Volume IV Parts B+C (v2.0 October 2017). Therefore a neutral pH of 7 is assumed.

Provided a pK_a of 3.7, a log P_n of -0.54 (derived from the EPI Suite experimental database, see above)⁷ and a pH_{soil} of 7, a Koc of 30 (log Koc of 1.48) is yielded.

Conclusion:

The HPLC-method to estimate the Koc for formic acid resulted in an indication that the log Koc for formic acid will be below 1.25 and may vary with pH. The results obtained with KOCWIN, a programme to estimate the Koc, was also in line with the results obtained from the HPLC-method.

A theoretical log Koc of 0 (Koc = 1 L/kg) was estimated for formic acid.

⁷ A note regarding the log Kow used in the model of Franco et al.: log Pn in the model is the octanol-water partition coefficient of the neutral molecule, which is estimated to be -0.54 based on the EPI Suite experimental database. The experimentally derived log Kow of -2.1 is determined at a pH of 7, and can therefore not be used in the model because, given a pKa of 3.7, at that pH the predominant species is the ionized molecule (formate).

However, for risk assessment purposes, the environmental relevant species is not formic acid but formate. The method of Franco et al. (2009) was used to estimate a pH-dependent Koc and yielded a slightly higher log Koc of 1.48 to be used for risk assessment purposes assuming a soil with a neutral pH of 7.

Value used in Risk Assessment							
Value/conclusion	log Koc = 1.48 (for a soil with a neutral pH of 7)						
Justification for the value/conclusion	Based on the method of Franco et al. (2009) and in line with the results obtained through the HPLC-method and calculations through EPI Suite, this theoretical value is deemed acceptable and no further tests in soil are required at this point.						

4.1.2.2 **HIGHER TIER SOIL ADSORPTION STUDIES**

No available data.

4.1.3 Bioaccumulation

4.1.3.1 **MEASURED AQUATIC BIOCONCENTRATION**

Data waiving	
Information requirement	No experimental value is available. The applicant did not submit a justification for non-submission, however the BPR Annex II states that experimental determination may not be necessary if it can be demonstrated on the basis of physico-chemical properties (e.g. log Kow < 3) or other evidence that the substance has a low potential for bioconcentration. This statement is repeated in the Guidance on BPR: Volume IV. Part A, Chapter II: Requirement for Active Substances, §9.1. This exemption of submission of experimental data is the case for formic acid, since the experimental log Kow is well below the cut-off value of 3 (log Kow = -2.10 , pH7).
Justification	The applicant did not submit a justification, but based on the guidance/legislation quoted above, no further justification from the applicant is required.

4.1.3.2 **ESTIMATED AQUATIC BIOCONCENTRATION**

To estimate the accumulation of formic acid in aquatic organisms, the applicant submitted an estimation using BCFWIN v.2.17 (2007, BPD ID A7.4.2_01), which is an estimation program included in EPA's EPISUITE. Using this model, the bioconcentration of formic acid in aquatic organisms is estimated based on the experimental log Kow of -2.1 (derived for pH 7 or mean for measured log Kow at pH 5, 7 and 9) (2002, BPD ID A7.1.1.1.1_01). Since the log Kow is below 1, the program assigns a default log BCF of 0.5 (BCF = 3.162 L/kg_{wwt}) and does not calculate a specific BCF for formic acid. However, this value indicates that formic acid is not expected to bioaccumulate in aquatic organisms, which is in accordance with the hydrophilic nature of formic acid, as well as with the log Kow being smaller than 3.

Additionally, BE eCA also calculated the BCF from the log Kow, according to the linear relationship developed by Veith et al. for substances with a log Kow between 2 and 6; and which is included in the Guidance Volume IV part B as equation 74:

 $logBCF_{fish} = 0.85 \times logKow - 0.70$

With this equation a log BCF of -2.48 is calculated (BCF = $0.00327 \text{ L/kg}_{wwt}$).

BPC-43-2022-07B

Summary table – Estimated aquatic bioconcentration									
Basis for Log Kow estimation (measured)		Estimated BCF for fish (freshwater) [L/kg _{wwt}]	Estimated BCF for fish eating bird/predator	Remarks	Reference				
BCFWIN v2.17 (reproduced in BCFBAF v3.01)	-2.1	3.162	/	since log Kow is below 1, the program reverts to a default log BCF of 0.5 (BCF = 3.162)	2007 BPD ID A7.4.2_01 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_4_1				
BPR guidance Volume IV, Part B, eq.74	-2.1	0.00327	/	/	/				

Value used in Risk Assessment							
Value/conclusion	The different estimated methods concur that formic acid will have a low potential to bioaccumulate, which is in line with the hydrophilic nature of formic acid and its log Kow being below 3.						
Justification for the value/conclusion	/						

4.1.3.3 **MEASURED TERRESTRIAL BIOCONCENTRATION**

Data waiving	
Information requirement	No experimental value is available and the applicant submitted a justification for non-submission (<i>Doc IIIA JOINT: FA_BPR_Ann_II_9_6</i>), stating the low log Kow (-2.1) as indication of formic acid's low potential to bioaccumulate.
Justification	Justification is acceptable and no experimental test is required.

4.1.3.4 **ESTIMATED TERRESTRIAL BIOCONCENTRATION**

The applicant did not submit an estimation for the terrestrial bioconcentration. BE eCA made its own calculations based on the available guidance.

According to the BPR Guidance Volume IV, Part B; bioconcentration can be described as a hydrophobic partitioning between the pore water and the phases inside the organism. It can be modelled according to the equation described by Jager (1998):

$$BCF_{earthworm} = \frac{(0.84 + 0.012K_{ow})}{RHO_{earthworm}}$$

The log K_{ow} for formic acid was experimentally determined as -2.1, giving a K_{ow} of 0.0079 L/kg. RHO_{earthworm} is set by default on a value of 1 kg_{wwt}/L.

This gives a BCF_{earthworm} of 0.84 L/kg_{wwt}, which indeed indicates a low potential of formic acid for bioaccumulation.

Value used in Risk Assessment							
Value/conclusion	Using the equation proposed in the BPR guidance, a BCF _{earthworm} of 0.84 L/kg _{wwt} is determined						
Justification for the value/conclusion	/						

4.1.4 Monitoring data

No available data.

4.2 EFFECTS ON ENVIRONMENTAL ORGANISMS

4.2.1 Atmosphere

The vapour pressure of 42.71 hPa (20 °C; BPD ID A3_01) and the Henry's Law Constant of 0.16 Pa.m³/mol (20 °C; ECT Oekotoxicologie GmbH; BPD ID A3_11) indicate low to moderate potential for volatilization and evaporation from water and wet surfaces. The potential of formic acid to be degraded by photo-oxidation in air is moderate with an estimated half-life of 855.7 hours (cfr. §4.1.1.1.3. above).

Besides the anthropogenic sources of emission, formic acid and formate are naturally occurring molecules with normal ("background") concentrations in the range of $< 0.3 - 35 \ \mu g/m^3$. Concentration levels are dependent upon location and season (Doc IIIA JOINT: FA_BPR_Ann_II_10_3_2).

No effects on the ozone layer or relevant contribution to global warming and acidification are expected.

4.2.2 Sewage treatment plant (STP)

Two tests on the inhibitory effect of formic acid on microbial activity were submitted.

• The inhibition of oxygen consumption in activated sludge due to formic acid was evaluated in a test conducted according to ISO/DIS 8192 Part B, which is similar to OECD 209 (1988c, BPD ID A7.4.1.4_01).

The highest concentration tested was 988 mg/L and the test concludes that the EC_{20} is greater than this concentration.

However, BE eCA is of the opinion that this test cannot be used for the further risk assessment, since reliability cannot be assigned (value of 4) due to a severe lack in details in the original test report.

A second study on the inhibitory effect of <u>formic acid</u> on the respiration rate of aerobic activated sludge, taken from a sewage treatment plant treating predominantly domestic sewage, was submitted by the applicant after the previous study was deemed lacking. The test (<u>10000000</u> 2016, BPR ID A9.1.5_01) was performed over a contact period of 3 hours in a static test system, according to OECD 209 and following GLP.

Three replicates of each nominal test-concentration of 5, 15.8, 50, 158 and 500 mg/L were tested in parallel with six control replicates and four different concentrations of the reference item 3,5-dichlorophenol. Additionally, the same test-concentrations were repeated with the addition of N-allylthiourea to distinguish between total, heterotrophic and nitrification-related respiration.

The results of the statistical analysis of the respiration data collected, showed no considerable concentration-related inhibition of total, heterotrophic or nitrification-related respiration by formic acid. No EC_x values could therefore be determined at concentrations \leq 500 mg/L following this test.

BPC-43-2022-07B

Formic acid was tested in Penicillin flasks of 10 mL at nominal concentrations of 0, 7.81, 15.63, 31.25, 62.5, 125, 250, 500 and 1000 mg/L. Four parallel repeats per test concentration were run, including an un-inoculated sample. After an incubation time of 17 hours, the extinction was measured at 436 nm. No analytical monitoring to confirm the nominal test concentrations was performed. The pH was measured in the un-inoculated samples at test start and end, and in the inoculated samples at test end.

The lowest concentration revealing an inhibition is 31.25 mg/L, with an inhibition of 1.86 %. An inhibition of over 99% compared to the control is observed in the test concentrations of 62.5 mg/L and up. This inhibition can be partly due to the acidic pH, but is not confirmed with a test run at neutralised concentrations.

Statistical analysis calculates an EC₁₀ of 33.9 mg/L, an EC₅₀ of 46.7 mg/L and an EC₉₀ of 59.5 mg/L.

Summary ta	Summary table – inhibition of microbial activity									
Method, Guideline,	Test material	Species/ Inoculum	Endpoint	Exposure		Results			Remarks	Reference
GLP status, Reliability				Design	Duration	EC10 [mg/L]	EC₅₀ [mg/L]	EC ₉₀ [mg/L]		
ISO/DIS 8192 Part B No GLP Reliability 4	FORMIC ACID	activated sludge	oxygen consumpti on	respiration inhibition	30 min	EC ₂₀ = >988	/	/	only single concentratio n no analytical verification abstract report	1988c BPD ID A7.4.1.4_01 <i>Doc IIIA JOINT:</i> <i>FA_BPR_Ann_II_9_1_5</i> _1_a
OECD 209 GLP Reliability 1	FORMIC ACID	activated sludge	oxygen consumpti on	respiration inhibition	3 h	>500	>500	>500	nominal concentratio ns, adjusted for pH with NaOH	2016 BPR ID 9.1.5_01 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_5 _01_final_28Mar2017

BPC-43-2022-07B

DIN 38412 part 8 no GLP reliability 2	FORMIC ACID	Pseudomona s putida	optical cell density at 436 nm	growth inhibition	17 h	33.9	46.7	59.5	no measured concentratio n No pH adjusted concentratio ns	1991 BPD ID A7.4.1.4_02 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_5 _2
--	----------------	------------------------	--------------------------------------	----------------------	------	------	------	------	---	--

Value used in Risk Assessment								
Value/conclusionFormic acid: EC10 > 500 mg/L								
Justification for the value/conclusion	Based on available results, the short-term test is preferred, in accordance with the retention time in a STP. The EC_{10} value was determined at concentrations >500 mg/L.							
	The 17h test is considered less relevant, since it uses glucose as a substrate.							

4.2.3 Aquatic compartment

In aqueous solution and at neutral pH, formic acid and water-soluble formate salts dissociate and are present as the formate anion in solution. The behaviour of chemical dissociation in water has particularly been investigated with potassium diformate (CAS No. 20642-05-1), which served as test compound in several toxicity studies. Based on these physico-chemical properties, it is justified to include kinetic and metabolism studies conducted with water-soluble formate salts in these considerations. In order to provide data for the ecotoxicity of formic acid without effects due to the low pH which is induced by formic acid, study results for ammonium formate and potassium formate were considered. As fish and aquatic invertebrates are sensitive towards ammonium dissolved in water, the results derived from testing with ammonium formate should not be used alone. On the other hand, no effects are expected due to the potassium ion (K+) contained in potassium formate.

4.2.3.1 **FRESHWATER COMPARTMENT**

4.2.3.1.1 Acute toxicity (freshwater)

4.2.3.1.1.1 Fish

Three acute toxicity tests to fish in freshwater were submitted, one using the test substance formic acid and two other using formate salts, meaning that in water the fish are mainly exposed to the formate anion.

• The acute toxicity of formic acid to the golden orfe (*Leuciscus idus L.*, golden variety) was studied following the German Industrial Standard DIN 38412, Part 15 (1989, BPD ID A7.4.1.1_01).

The test system was a static system without any analytical monitoring of the test substance concentration. The nominal test concentrations of 0, 10, 21.5, 46.4 and 100 mg/L were tested using 10 fish for each concentration. An additional concentration of 100 mg/L was tested where the pH was neutralised using NaOH, in order to assess the effect of the low pH on the toxicity. The test water was reconstituted water according to the aforementioned guideline.

The fish were checked for symptoms and mortality after 1, 4, 24, 48, 72 and 96 hours. At these times also other parameters, such as temperature, dissolved oxygen and pH were analysed.

No mortality was reported for the control group and at test concentrations ranging from 10 and 46.4 mg/L and in the pH adjusted test concentration of 100 mg/L. In the non-pH adjusted 100 mg/L test concentration, 100 % mortality was reached after 1 hour.

When analysing the measured pH throughout the study, it is noted that the pH in the 100 mg/L test concentration was 3.3, which was probably a factor for the high mortality, since no mortality was reported at the same test concentration with neutralised pH.

However, it should be mentioned that in the 46.4 mg/L test concentration, pH was initially also quite low (4.3), but quickly rose to a neutral 7.2 at the end of the test. This seems to be an indication that the test substance concentration was not maintained throughout the test and

BPC-43-2022-07B

since no analytical monitoring was performed, this can be seen as a major deviation. Therefore BE eCA is of the opinion that the results from this test are not reliable and cannot be used in the further risk assessment.

The applicant was asked to comment on BE's assessment to attribute a reliability of 3 to this test. In their reply they make reference to the acute toxicity test discussed in the next bullet point below. In this test, also performed under static conditions, analytical monitoring showed that the test item concentration remained within the allowed variation. According to the applicant, if it is the case for that static test, it will also be the case for this static test.

BE understands that this perhaps may be some sort of indication, also when considering that the substance is hydrolytically stable (cfr. BPD ID A7.1.1.1_01) and the ready biodegradation tests (cfr. BPD ID A7.1.1.2.1_01 and BPD ID A7.1.1.2.1_02) show little degradation in the first couple of days. However, this does not answer the question of the rising pH and without conclusive proof of stability of the test substance, uncertainty remains. Therefore, BE is not inclined to change their assessment of the reliability. Therefore this test remains at reliability 3.

• In a first test, using <u>ammonium formate</u> as test material, the acute toxicity effects on zebrafish (*Danio rerio*) were studied according to OECD 203 (<u>Detected</u> 2005, BPD ID A7.4.1.1_02). In a 96 h static test design, 10 fish each were exposed to nominal test concentrations of 0, 45, 90, 180, 360 and 720 mg/L. Samples for chemical analysis via ion chromatography were taken at test start and test end from all test vessels. Mean recovery values were higher than 80 % of the nominal concentrations, therefore the effect concentrations are based on these nominal concentrations.

Mortality, behavioural abnormalities, temperature, pH and dissolved oxygen were checked for each concentration after 24, 48, 72 and 96 hours. The test conditions - temperature, pH and dissolved oxygen – remained within acceptable limits throughout the test. No mortality was reported in the control group or in the test concentrations up to 90 mg/L. After 96h the lowest test concentration where all fish had died was 180 mg/L. The 96h LC₅₀ was determined using the geometric mean of the LC₀ and LC₁₀₀ resulting in a value of 127.28 mg/L.

• A second test using a formate salt, this time <u>potassium formate</u>, was also conducted according to OECD 203 (**1992e**, BPD ID A7.4.1.1_03) using rainbow trout (*Oncorhynchus mykiss*). The test design was a semi-static one, with daily renewal of the test medium to ensure that test concentrations were maintained. However, no analytical monitoring was performed to corroborate this.

Ten fish per nominal test concentration of 0, 1000, 1800, 3200, 5600 and 10000 mg/L was used. Mortality was checked after 3, 6, 24, 48, 72 and 96 hours. Temperature, pH and dissolved oxygen were measured at test start and end, and remained within the acceptable limits. No mortality was reported for the control group or in the test concentrations up to 1800 mg/L. After 96h, the lowest test concentration were all fish had died was 5600 mg/L. The 96h LC_{50} was determined using the method of Thompson & Weil (1952, moving-average interpolation) and resulted in a value of 3500 mg/L.

4.2.3.1.1.2 Invertebrates (daphnia magna)

Three acute toxicity tests on the aquatic invertebrate *Daphnia magna* were submitted, one using formic acid as test substance, while the other two used formate salts, meaning that in water the test animals are mainly exposed to the formate anion.

BPC-43-2022-07B

• The acute toxicity of formic acid to Daphnia magna was studied in a test performed according to Directive 79/831/EEC, C.2 (1988, BPD ID A7.4.1.2_01).

The test species were exposed during 48-hours in a static test system without any analytical monitoring of the test concentration. Nominal test concentrations of 0, 0.781, 1.56, 3.12, 6.25, 12.5, 25, 50 and 100 mg/L were tested using 20 animals per concentration. Purified water was used as test medium, in which sulphuric acid was used to reduce the buffering capacity of the carbonic acid system and deionized water was added to reduce the total hardness.

At the beginning and after 3, 6, 24 and 48 hours, the swimming inability of the Daphnia was checked. Oxygen and pH measurements were performed at test initiation and after 48 hours.

The immobility in the control group was within the validity criterion (< 10 % immobility). In the two highest concentrations, 50 and 100 mg/L, immobility already reached 100% after 6 and 3 hours respectively. At these concentrations, pH was below 5 at the start of the experiment. No pH adjusted concentrations were tested to distinguish between the effect due to low pH and toxicity. In the test concentration of 25 mg/L, 10 % immobility was reached after 48 hours. The 48h EC₅₀ was calculated using the moving average method, resulting in a value of 32.19 mg/L. However, it must be kept in mind that it is unclear if this concentration causes mortality due to toxicity of the test substance or due to a decrease in the pH of the test medium.

The acute toxicity of <u>ammonium formate</u> to aquatic invertebrates (*Daphnia magna*) was studied in a GLP-study according to OECD 202 (<u>1997</u>) 2005, BPD ID A7.4.1.2_02).

In this 48-hour, static test, the test organisms were exposed to nominal concentrations of 0, 45, 90, 180, 360 and 720 mg/L. The *Daphnia* were checked for immobility at test start and after 24 and 48 hours. Oxygen content, pH and test item concentrations were determined at the start and end of the test. These parameters were within the acceptable ranges, leading to the use of nominal values for determining the toxicity values.

After 48 hours, no immobilisation was observed in the control and lowest test concentrations up to 90 mg/L, while 100 % immobility was reached in the highest tested concentration of 720 mg/L. The 48h EC_{50} was determined using the ToxRat software (v2.09) and yielded a value of 365 mg/L.

• A second study, testing the acute toxicity of the formate ion to *Daphnia magna* was done using potassium formate as a test substance. The test was conducted according to OECD 202, conform GLP (**Daphnia** 1992, BPD ID A7.4.1.2_03).

In this 48-hour static test, *Daphnia* were exposed to nominal concentrations of 0, 10, 18, 32, 56, 100, 180, 320, 560 and 1000 mg/L. Oxygen content and pH were measured at test initiation and after 48 hours, and remained within the acceptable intervals. No analytical monitoring of the test concentration was done, on request by the test sponsor. The applicant was asked why this was requested, but no explanation could be given. The test sponsor probably assumed the test concentration could be maintained for the exposure duration of 48 hours.

BPC-43-2022-07B

After 0, 24 and 48 hours, the test species were checked for mobility. At test end, immobilisation in the control group was within the acceptable range. The highest test concentration where no immobilisation was observed after 48 hours was 56 mg/L. No 100 % immobilisation was reached in any of the tested concentrations. The 48h EC_{50} was determined using the moving average method, resulting in a value of 540 mg/L

4.2.3.1.1.3 Algae

4.2.3.1.1.3.1 Green algae

Three growth inhibition studies on green algae were submitted, one using formic acid as test substance, while the others used a formate salt, meaning that in water the test animals are mainly exposed to the formate anion.

• The inhibitory effect of <u>formic acid</u> on cell multiplication of the unicellular green algae *Desmodesmus subspicatus* was studied in a test performed according to German Industrial Standard DIN 38412, part 9 (**Description** 1988, BPD ID A7.4.1.3_01).

Algal exposition was performed in test tubes of 10 mL with flat bottom. The initial cell density of *Desmodesmus subspicatus* was 10^4 cells/mL, which is higher than what is recommended according to OECD 201. The algae were exposed to nominal concentrations of 0, 0.781, 1.56, 3.125, 6.25, 12.5, 25 and 50 mg/L. No analytical monitoring of the test concentrations were done, but pH was measured in the uninoculated test concentrations at test start and after 96h and in the inoculated concentrations after 96h. Fluorescence measurements were performed after 0, 24, 48, 72 and 96 hours.

An inhibitory effect on the algal growth rate of 3 % was seen starting at the test concentration of 12.5 mg/L and 100 % inhibition was reached at the 50 mg/L test concentration, the highest concentration tested. The inhibition observed at the higher test concentrations might also be due to the low pH (4.9 in inoculated sample after 96h) and since no neutralized concentrations were tested it is not possible to distinguish between effect due to the pH or due to toxicity. After statistical analysis of the results through ToxRatPro, it is concluded that the E_rC_{50} is 30.21 mg/L, the E_bC_{50} is 26.92 mg/L, the E_rC_{10} is 24.52 mg/L, the E_bC_{10} is 17.71 mg/L and the NOE_rC is 6.25 mg/L.

• The inhibitory effect of <u>ammonium formate</u> on the growth of the unicellular green algae *Pseudokirchneriella subpacitata* was studied a 72h test performed according to OECD 201 (**December** 2005, BPD ID A7.4.1.3_02).

Algal exposures were performed in 250 mL flasks containing 100 mL test solutions at the nominal test concentrations of 0, 76.8, 192, 480,1200 and 3000 mg/L. The initial cell density was 10⁴ cells/mL and cell number determinations were performed after 24, 48 and 72 hours. Test item concentrations and pH were determined at the start and end of the test. These parameters were within the acceptable ranges, leading to the use of nominal values for determining the toxicity values. The test results were statistically analysed using the software ToxRat. NOEC was determined by the Welch t-test.

An inhibitory effect of algal growth of 3.4 % was already seen in the lowest test concentration of 76.8 mg/L. At the highest concentration (3000 mg/L) growth inhibition reached 39.8 %. Inhibition of biomass integral showed a 12.6 % inhibition at 76.8 mg/L, while at 3000 mg/L

BPC-43-2022-07B

an inhibition of biomass of 85.4 % was reached. Statistical analysis revealed a 72h E_rC_{50} of 1240 mg/L, a 72h NOE_rC of less than 76.8 mg/L and a 72h E_bC_{50} of 320 mg/L.

• A limit test on the inhibitory effect of <u>potassium formate</u> on the growth of the unicellular green algae *Scenedesmus subspicatus*, now known under the name *Desmodesmus subspicatus*, was performed according to OECD 201 (**Descent** BPD ID A7.4.1.3_03).

Only a single concentration was tested, namely 1000 mg/L, and compared with the untreated control to determine effect. Algal exposure was performed in 250 mL flasks containing 100 mL test solution. The initial cell density was 9.2×10^4 cells/mL. Measurements of fluorescence were performed at 0, 24, 48 and 72 hours. The nominal test concentration was not analytically verified, on request by the test sponsor. The applicant was asked for comment, but could not elaborate on the reasoning. The pH was measured at test initiation and end; and remained within the acceptable range.

The test concentration of 1000 mg/L had an inhibitory effect of 10 % on the algal growth rate (24-48 h), but an increase of 19 % in biomass was reported compared to the control. Since only one test concentration was tested, no EC_{50} can be determined and it can only be stated that it will be higher than the concentration that was tested.

4.2.3.1.1.3.2 Cyanobacteria or diatoms

According to the Guidance on the Biocidal Product Regulation, Volume IV Part A, on information requirements, tests on the effect on growth rate of cyanobacteria or diatoms are required for phytotoxic and/or antimicrobial substances and should preferably be studied in a fresh water species.

The applicant did not submit a test on a freshwater species, but submitted a justification for non-submission (cfr. Doc IIIA JOINT: FA_BPR_ANN_II_9_1_3_JNS_21Sep2016). Therein they argument that an additional study will not provide additional information to address the risk to algae. This justification for non-submission was deemed acceptable.

Summary	Summary table - acute aquatic toxicity									
	Test	rest Species nateria	Endpoi	Exposu	ıre	Results			Remarks	Reference
Guidelin e, GLP status, Reliabili ty	materia I		nt	Desig n	Durati on	L(E)Co [mg/L]	L(E)C 50 [mg/ L]	L(E)C100 [mg/L]		
Fish	ish									

BPC-43-2022-07B

DIN 38412, GLP- study, Reliability 3	FORMIC ACID	<i>Leuciscus idus</i>	mortality	static	96h	46 ⁿ	67.82 ^g	100 ⁿ	no measured concentratio ns, only nominal	1989 BPD ID A7.4.1.1_01 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_1 _1
OECD 203 GLP- study, Reliability 1	Ammoniu m formate	Danio rerio	mortality	static	96h	90 ⁿ	127.28 9	180 ⁿ	mean measured concentratio ns at test start and test end were >80 % of the nominal concentratio ns	2005 BPD ID A7.4.1.1_02 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_1 _2
OECD 203 GLP-study Reliability 2	Potassiu m formate	Oncorhynchus mykiss	mortality	semi- static	96h	1800 ⁿ	3500 ^t	5600 ⁿ	semi-static conditions with daily renewal	1992e BPD ID A7.4.1.1_03 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_1 _3
Invertebr	ates									
79/831/EE C, C.2 no GLP Reliability 2	FORMIC ACID	Daphnia magna	immobilit Y	static	48h	25 ⁿ	32.19 ^t	50 ⁿ	no measured concentratio n No pH adjusted concentratio ns	1988 BPD ID A7.4.1.2_01 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_2 _1_1
OECD 202 GLP study Reliability 1	Ammoniu m formate	Daphnia magna	immobilit Y	static	48h	90 ⁿ	365	720 ⁿ	mean measured concentratio ns at test start and	2005 BPD ID A7.4.1.2_02

BPC-43-2022-07B

									test end were >80 % of the nominal concentratio ns	Doc IIIA JOINT: FA_BPR_Ann_II_9_1_2 _1_2
OECD 202 GLP study Reliability 2	Potassiu m formate	Daphnia magna	immobilit y	static	48h	56 ⁿ	540 ^t	>1000 (no 100% reached at highest test concentrati on)	no measured concentratio ns at request of test sponsor	1992 BPD ID A7.4.1.2_03 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_2 _1_3
Algae (gro	owth inhil	bition)				NOErC/Er C ₁₀	E _b C ₅₀ ¹	ErC ₅₀ ²		
DIN 38412, part 9 no GLP Reliability 2	FORMIC ACID	<i>Desmodesmus subspicatus</i>	growth inhibition	static	72h	NOEC = 6.25 ⁿ ErC10 = 24.52 EbC10 = 17.71	26.92 ⁿ	30.21 ⁿ	no measured concentratio ns No pH adjusted concentratio ns	1988 BPD ID A7.4.1.3_01 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_3 _1_1
OECD 201 GLP study Reliability 1	Ammoniu m formate	Pseudokirchneri ella subcapitata	growth inhibition	static	72h	<76.8 ⁿ	320 ⁿ	1240 ⁿ	mean measured concentratio ns at test start and test end were >80 % of the nominal concentratio ns	2005 BPD ID A7.4.1.3_02 Doc IIIA JOINT: FA_BPR_Ann_II_9_1_3 _1_2
OECD 201 GLP study	Potassiu m formate	Desmodesmus subspicatus	growth inhibition limit test	static	72h	≥1000 ⁿ	>1000 ⁿ	>1000 ⁿ	no measured concentratio ns at	1992 BPD ID A7.4.1.3_03

BPC-43-2022-07B

Reliability 2							request of test sponsor	Doc IIIA JOINT: FA_BPR_Ann_II_9_1_3 _1_3
^g geometric ^t using Thor ¹ using a line	mean of LC _o npson & Wei ear model from the are	il method (moving ea under the grow	-	erpolation)				

Conclusion on acute toxicity (freshwater)

• FORMIC ACID:

An aquatic acute toxicity test on formic acid was submitted for each trophic level. However, the test submitted for fish was deemed unreliable (3). The growth inhibition test on algae and the test on *Daphnia magna* can be of some value, but it must be born in mind that the endpoints derived in these studies are nominal values and that no distinction can be made between the effect due to acidity and effect due to the intrinsic toxicity of formic acid.

• AMMONIUM FORMATE:

An aquatic acute toxicity test using ammonium formate as a test substance was submitted for each of the three required trophic levels. All three tests were assessed with a reliability of 1. The resulting $L(E)C_{50}$'s between the three trophic levels are each in the same order of magnitude, with the 96h LC_{50} of 127.28 mg/L for fish being the smallest recorded value.

• POTASSIUM FORMATE:

Aquatic acute toxicity tests using potassium formate are available for each of the three required trophic levels and are all considered reliable (2).

Value used in Risk Assessment								
Value/conclusion	 96h LC₅₀ fish = 3500 mg/L 48h EC₅₀ daphnia = 540 mg/L 							

BPC-43-2022-07B

	 72h ErC₅₀ algae > 1000 mg/L 72h NOErC algae = 1000 mg/L
	Even though the order of magnitude of the endpoints derived from the studies submitted on the three tropic levels is not so different between the species, Daphnia are considered the more sensitive species with the lowest reported EC_{50} of 540 mg/L
Justification for the value/conclusion	Studies conducted with formate salts are considered acceptable to assess the toxicity of formic acid without the effects due to the low pH. Since fish, aquatic invertebrates and algae are known to be sensitive towards ammonium dissolved in water, the results derived from testing with potassium formate are considered more relevant, since no effects are expected due to the potassium ion (K^+).

4.2.3.1.2 Chronic toxicity (freshwater)

No chronic toxicity tests were submitted for fish or other aquatic plants. Based on the results obtained in the acute toxicity tests, it was concluded by the applicant that *Daphnia* were the most sensitive of the three trophic levels, and they therefore submitted a chronic tests using *Daphnia magna*.

• The chronic effect of <u>formic acid</u> on the reproduction of *Daphnia magna* was tested in a study performed according to OECD 211 (2007, BPD ID A7.4.3.4_03).

Nominal test concentrations of 0, 1.0, 3.2, 10, 32 and 100 mg/L were tested. Because the pH of the two highest test concentrations was below the suitable range, these test concentrations were neutralized using NaOH. The actual concentrations were verified and remained within the acceptable range, so that results are based on the nominal concentrations.

Final results on statistical evaluations of the parameters reproduction, length and weight indicate that no effects were observed up to the highest concentrations of 100 mg/L. The corresponding NOEC is > 100 mg/L.

Summary t	Summary table - chronic aquatic toxicity									
Method,	Test	Species	Endpoint/	Ехр	osure	Results	Remarks	Reference		
Guideline, GLP status, Reliability	material		type of test	Design	Duration	LOEC/NOEC/EC10 [mg/L]				

Fish								
No test subm	itted							
Invertebra	tes							
OECD 211 GLP-study Reliability 1	FORMIC ACID	Daphnia magna	reproduction, length, weight	semi- static (renewal every 2- 3 days)	21d	>100	pH was neutralized in the concentrations indicating a too low pH mean measured concentrations at test start and test end were >80 % of the nominal concentrations	2007 BPD ID A7.4.3.4_03 <i>Doc IIIA JOINT:</i> FA_BPR_Ann_II_9_1_6_2_a
Other aqua	Other aquatic plants							
No additional	studies were	submitted	(cfr. acute toxic	ity tests on	algae)			

Value used in Risk Assessment							
Value/conclusion	21d NOEC aquatic invertebrates ≥ 100 mg/L						
Justification for the value/conclusion	See test results (with reliability 1) above.						

4.2.3.2 **SEDIMENT COMPARTMENT**

4.2.3.2.1 Acute toxicity (freshwater sediment)

Data waiving						
Information requirement	None					
Justification						

4.2.3.2.2 Chronic toxicity (freshwater sediment)

Data waiving				
Information requirement	None			
Justification				

4.2.3.3 **MARINE COMPARTMENT**

4.2.3.3.1 Acute toxicity (seawater)

4.2.3.3.1.1 Fish

In the environment, formic acid will mostly be present in its formate form. To test the effect of the formate anion on marine fish species, one study was submitted.

• An acute toxicity test, was performed with synthetic seawater, using <u>potassium formate</u> as the test material and juvenile turbot (*Scophthalmus maximus*) as test species. The test was conducted according to Guidelines of the UK Ministry of Agriculture, Fisheries and Food (**Maximus**) as test species. The test was conducted according to Guidelines of the UK Ministry of Agriculture, Fisheries and Food (**Maximus**) as performed to confirm that the test concentrations were indeed maintained throughout the test.

Ten fish each were exposed to the nominal test concentrations of 0, 320, 560, 1000, 1800 and 3200 mg/L. Temperature, pH and dissolved oxygen were checked at test start and after 24, 48, 72 and 96 hours, and the results show that these parameters remained within the acceptable limits. Test concentrations were checked for mortality after 3, 6, 24, 48, 72 and 96 hours. No mortality was reported in the control group or in test concentrations up to 1000 mg/L. After 96 h, the lowest test concentration that had a 100 % mortality rate was 3200 mg/L. The 96h LC₅₀ was determined using a linear model and resulted in a value of 1720 mg/L.

4.2.3.3.1.2 Invertebrates (other species)

In addition to the acute toxicity tests on *Daphnia magna*, the applicant submitted two supplementary studies on the acute toxicity effect of the formate ion on two marine invertebrate species.

• The acute toxicity of <u>potassium formate</u> to brown shrimp (*Crangon crangon*) was studied in a 96-hour semi-static test following Guidelines of the Ministery of Agriculture, Fisheries and Food, UK (**1992**, BPD ID A7.4.1.2_04).

Twenty shrimp each were exposed to nominal test concentrations of 0, 1000, 1800, 3200, 5600 and 10000 mg/L. Synthetic seawater was used as a test medium. No chemical analysis was carried out. Temperature, oxygen content and pH were measured at test start and after 24, 48, 72 and 96 hours, and remained within the acceptable ranges.

The test species were checked for moulting and mortality after 3, 6, 24, 48, 72 and 96 hours. No mortality was reported in the control group and in the test concentrations up to 1000 mg/L. After only 3 hours, all test species had died in the highest concentration of 1000 mg/L. After 96h all shrimp in the test concentration of 1800 mg/L and up had died. The 96h LC_{50} was calculated according to a quadratic model and yielded the value of 1308 mg/L.

• The acute toxicity of potassium formate liquor (i.e. potassium formate 75% in water) to the marine copepod *Acartia tonsa* was studied in a 48-hour static test according to a guideline proposal to ISO TC147/SC5/WG2 (**Markov** 1994, BPD ID A7.4.1.2_05).

BPC-43-2022-07B

Twenty copepods each were exposed to nominal test concentrations of 0, 56, 100, 320, 560 and 1000 mg/L. Natural seawater was used as a test medium. No chemical analysis was carried out. Temperature, salinity, oxygen content and pH were measured at test start and end in the control group and in the group testing 1000 mg/L. Based on these measurements, these parameters remained within the acceptable range.

The test species was checked for mortality after 24 and 48 hours. Mortality in the control group was within the acceptable limits. After 48 hours, no or insignificant mortality occurred in test concentrations up to 320 mg/L. In the 560 mg/L concentration 20 % and in the 1000 mg/L concentration 65 % of the animals had died after 48 hours. The 48h LC₅₀ was graphically estimated as 531 mg/L.

4.2.3.3.1.3 Algae (diatoms)

The effect of the formate ion on the growth of marine diatoms was demonstrated by the submission of one test.

• The inhibitory effect of <u>potassium formate liquor</u> (i.e. potassium formate 75% in water) on cell multiplication of the marine diatom *Skeletonema costatum* was studied according to ISO/DIS 10253 (**December 1994**, BPD ID A7.4.1.3_04).

Exponentially growing algae were exposed to nominal concentrations of 0, 56, 100, 320, 560, and 1000 mg/l; using 250 mL flasks containing 200 mL of the test medium. Natural seawater was used as in preparing the culture medium and the initial cell density of the *Skeletonema costatum* was 10⁴ cells/mL. No analytical monitoring of the test substance concentrations was performed throughout the test. The pH was measured at the start and end of test and the results show that this parameter remained within the acceptable range.

Cell density measurements were performed after 24, 48 and 72 hours. The EC_{50} values were estimated using a logarithm linear or logarithmprobit plot of concentration and percent growth inhibition. At the highest tested concentration, 6 % inhibition of the growth rate and 20 % inhibition of the biomass integral was calculated after 72 hours. The 72-hour EC_{50} could therefore only be estimated as being larger than 1000 mg/L.

Summary table - acute aquatic toxicity										
Method,	Test	Species	Endpoi	Exposure		Results			Remarks	Reference
Guideline, GLP status, Reliability	materi al			L(E)C ₁₀₀ [mg/L]						
Fish										
UK Ministry of Agriculture,	Potassiu m formate	Scophthalm us maximus	mortality	semi- static, marine	96h	1000 ⁿ	1720 ^ı	3200 ⁿ	marine species	1992d BPD ID A7.4.1.1_04

BPC-43-2022-07B

Ficheries and Food guideline GLP study Reliability 2									semi-static conditions with daily renewal	Doc IIIA JOINT: FA_BPR_Ann_II_ 9_1_1_4
Invertebrate	s	L		<u> </u>	I		I	I		
Guidelines of the Ministry of Agriculture, Fisheries and Food, UK GLP study Reliability 2	Potassiu m formate	Crangon crangon	mortality	semi- static marine	96h	1000 ⁿ	1308	1800	marine species no measured concentrations	1992c BPD ID A7.4.1.2_04 Doc IIIA JOINT: FA_BPR_Ann_II_ 9_1_2_2_1
ISO TC147/SC5/W G2 GLP study Reliability 2	Potassiu m formate liquor	Acartia tonsa	mortality	static marine	48h	320 ⁿ	531	>1000 (no 100% reached at highest test concentrat ion)	marine species no measured concentrations	1994 BPD ID A7.4.1.2_05 Doc IIIA JOINT: FA_BPR_Ann_II_ 9_1_2_2_2
Algae (growt	h inhibit	ion)				NOErC/Er C ₁₀	E _b C ₅₀ ¹	ErC ₅₀ ²		
ISO/DIS 10253 (draft 1991) GLP study Reliability 2	Potassiu m formate liquor	Skeletonem a costatum	growth inhibition	static marine	72h	Not reported	>1000 ⁿ	>1000 ⁿ	marine species no measured concentrations	1994 BPD ID A7.4.1.3_04 Doc IIIA JOINT: FA_BPR_Ann_II_ 9_1_3_2
 ⁿ (based on) not ^g geometric mean ^t using Thompson ^l using a linear r ¹ calculated from ² calculated from 	an of LC_0 aron & Weil model not the area	nd LC100 Nethod (moving Nunder the grow	-	terpolatio	n)					

Value used in Risk Asse	Value used in Risk Assessment					
Value/conclusion	 96h LC₅₀ fish = 1720 mg/L 48h EC₅₀ invertebrates = 531 mg/L 72h E_rC₅₀ algae > 1000 mg/L Just as with the studies in fresh water, the order of magnitude of the toxicity values derived from the studies submitted on the three tropic levels is not so different between the species, Daphnia are considered the more sensitive species with the lowest reported marine EC₅₀ of 531 mg/L 					
Justification for the value/conclusion	Studies conducted with formate salts are considered acceptable to assess the toxicity of formic acid without the effects due to the low pH. No effect on the test species is expected due to the potassium ion (K^+).					

4.2.3.3.2 Chronic toxicity (seawater)

Data waiving				
Information requirement	None			
Justification				

4.2.3.4 **SEA SEDIMENT COMPARTMENT**

4.2.3.4.1 Acute toxicity (sea sediment)

Data waiving					
Information requirement	None				
Justification					

4.2.3.4.2 Chronic toxicity (sea sediment)

Data waiving			
Information requirement	None		
Justification			

4.2.3.5 **HIGHER TIER STUDIES ON AQUATIC ORGANISMS**

Nonesuch studies for formic acid or the formate ion were submitted or required at this point.

4.2.4 Terrestrial compartment

Formic acid is soluble in water and has a low adsorption potential (log Koc = 1.48). In soil formic acid will be mobile and present in the pore and ground water. The compound is however readily biodegradable and no long-term exposure of soil organisms to formic acid in soil is expected.

No specific results of ecotoxicity tests on terrestrial organisms are available for the risk assessment.

Data waiving					
Information requirement					
Justification	Equilibrium partitioning method will be used in the risk assessment.				

4.2.5 Groundwater

No data on groundwater was submitted.

4.2.6 Birds and mammals

No studies on birds were submitted.

The available literature data show a low intrinsic toxicity of formic acid or formate to birds (*Doc IIIA JOINT: FA_BPR_Ann_II_9_4_1*), with a reported $LD_{50} \ge 111 \text{ mg/kg}_{bw}$ for wild-trapped redwinged blackbirds and no adverse effects on body weight, feed utilisation or liveability up to $1.0\%_{w/w}$ Formic Acid and 1.45 % calcium formate in the diets of male broilers.

For oral studies on mammals, please see paragraphs 3.6.1 and 3.7.1 above.

Summary tab	Summary table –toxicity to birds and mammals								
Method, Guideline, GLP status, Reliability	Species	Endpoint	Exposure		Results [mg a.i./kg bw or feed]			Remarks	Reference
			Design	Duration	LD/LC ₅₀	LOEL/ LOEC	NOEL/ NOEC		
Birds									
No test submitte	d								
Mammals									
OECD 408 GLP: yes Rel. 1	Rat (≥ 6 weeks)	sub-chronic repeated oral toxicity Systemic values	OECD 408	90 days	/	2100	840	study with potassium diformate as test substance	1998 BPD ID A6.4.1_01 Doc IIIA JOINT: FA_BPR_Ann_II _8_9_2_01
Comparable to 94/40/EEC GLP: yes Rel. 1	Rat (≥ 6 weeks)	long-term repeated oral toxicity Systemic values	Compara ble to 94/40/E EC	104 weeks	/	1400	280		2002a BPD ID A6.5_01 Doc IIIA JOINT: FA_BPR_Ann_II _8_11_1_02

Value used in Risk Assessment					
Value/conclusion	NOAEL _{bird} = no value available NOAEL _{mammal} , oral_chr = 280 mg/kgbw.day				
	NOALLmammal, oral_chr – 200 Hig/ Kybw.udy				
Justification for the value/conclusion	Data on the avian toxicity of formic acid is not required. Data on the toxicity of formic acid on mammals was submitted for the human health part (see §3.6.1 and				
	3.7.1 on sub-chronic and long-term toxicity)				

4.2.7 Primary and secondary poisoning

4.2.7.1 **PRIMARY POISONING**

Data waiving	Data waiving			
Information requirement	None			
Justification	/			

4.2.7.2 **Secondary poisoning**

Data waiving	Data waiving					
Information requirement	No					
Justification	Formic acid is not expected to bioaccumulate based on the experimentally derived log Kow of -2.1 (23 °C, pH7) and the calculated BCF (see §4.1.3 above). Therefore, secondary poisoning of formic acid in either the aquatic or terrestrial food chain is considered not relevant.					

4.3 ENDOCRINE DISRUPTING PROPERTIES

No specific vertebrate tests to assess the endocrine disrupting (ED) properties of formic acid/formate for other non-target organisms were submitted by the applicant.

The 'Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009' (ECHA/EFSA, 7 June 2018)⁸ states:

There may be cases in which due to the knowledge on the physico-chemical and (eco)toxicological properties of the substance an ED assessment does not appear scientifically necessary or testing for this purpose not technically possible (BP Regulation, Annex IV or PPP Regulation, Annex, Point 1.5).

The Annex IV, section 1.2 of the BPR states:

There may be sufficient weight of evidence from several independent sources of information leading to the assumption/conclusion that a substance has or does not have a particular dangerous property, while the information from each single source alone is considered insufficient to support this notion. [...] Where consideration of all the available data provides sufficient weight of evidence for the presence or absence of a particular dangerous property:

- further testing on vertebrates for that property shall not be undertaken,

— further testing not involving vertebrates may be omitted.

The following discussion focusses on a weight of evidence based argumentation to determine whether an ED assessment for formic acid and its salts, and the subsequent vertebrate testing appear scientifically necessary.

Formic acid is the simplest carboxylic acid. The formate anion is the common metabolite of formic acid and formate salts in aqueous solutions at physiological and environmental pH values. The water soluble formic acid and formate salts rapidly dissociate in aqueous solutions (fresh and salt water, body fluids) to formate and a cation (H^+ or Na^+ , K^+ , NH_{4^+} , etc.). Formic acid and formate are both readily biodegradable in freshwater, producing only water and CO₂. Formate is also biodegradable in seawater (Please refer to 4.1 Fate and distribution in the environment). Formic acid has no potential for bioaccumulation (indeed log Kow is - 2.1 at pH 7 and BCF calculated value is 3.2).

Formic acid is a natural compound occurring at significant concentrations in all environmental compartments. Formic acid has been identified as a major contributor to acidic rain in remote environments [Galloway *et al.* 1982; Chameides and Davis, 1983]. Known major sources of formic acid in the atmosphere include fossil fuel and biofuel combustion [Kawamura and Kaplan, 1985], biomass burning [Andreae and Merlet, 2001], plants [Gabriel *et al.* 1999] and photochemical oxidation of volatile organic precursors [Neeb *et al.* 1997]. Stavrakou *et al.* (2012)

⁸ Referred to as 'Guidance on ED'.

BPC-43-2022-07B

showed that 90% of the formic acid produced is biogenic in origin, and largely sourced from tropical and boreal forests. The authors suggest that terpenoids – volatile organic compounds released by plants – are the predominant precursors.

In soil, low molecular-weight organic acids (including formic acid) are commonly present and are constantly released from root exudates and decayed plant litter, and through microbial organic matter decomposition. Takata *et al.* (2011) reported measured formic acid concentrations in soil ranging from 0.088 to 0.217 mg/kg_{dwt} on arable land and from 0.072 to 0.444 mg/kg_{dwt} in an adjacent oak forest. In a soil incubation experiment with poorly-drained soil conducted by Tete *et al.* (2015), formate concentrations in soil up to 0.18 mg/kg_{dwt} (at field capacity) and 1.89 mg/kg_{dwt} (in waterlogged soil) were observed. Van Hees *et al.* (2008) determined formate concentrations in the soil solution in different horizons of two coniferous forest soils. The authors observed the highest concentrations in the top soil (O1 horizon), ranging from 0.152 mg/L (3.3 μ M, mean of 6 values) at Heden, Sweden to 0.354 mg/L (7.7 μ M, mean of 6 values) at Nyänget, Sweden. Formic acid has a rapid turn-over in soil. Half-lives in soil under aerobic conditions of ≤ 1 day were observed in studies conducted by Glanville *et al.* (2012) and Hellstén *et al.* (2005b).

Formic acid is also reported to be present in manure (up to 1415 mg kg dry matter in fresh dairy manure) [Baziramakenga and Simard, 1998; Spoelstra, 1979; Iannotti *et al.*, 1979] and surface water (up to 155 µg/L) [Murtaugh and Bunch, 1965; Hama and Handa, 1981].

Besides their presence in the environment, formic acid and its conjugate base, formate, are also naturally occurring in virtually all living organisms as essential endogenous metabolites critical for one-carbon metabolism [Lamarre *et al.* 2013]. Formate is formed from precursors in the intermediary metabolism and is used as an important constituent of the C1 intermediary metabolism which is required for the biosynthesis of amino acids and nucleic acid bases (purines and pyrimidines). As a critical endogenous metabolite, formate is not assumed to be inherently endocrine active.

Endocrine activity was investigated using *in silico* methods. None of the endocrine activity related profilers of the OECD QSAR Toolbox V4.1 showed an alert for formic acid. In fact, formic acid was grouped into the category "non-binder, non-cyclic structure". Furthermore, binding to either oestrogen receptor (ER) or androgen receptor (AR) was estimated using in silico models implemented in OASIS TIMES (V2.27.19.13). None of the three models predicted a binding of formic acid to ER (with or without metabolisation of parent compound) and AR (without metabolisation). Please note that formic acid and formate have no structural similarity to intrinsic endocrine active substances (e.g. oestrogen, androgen). Altogether, based on *in silico* data it is very unlikely that formic acid exerts an endocrine/EATS-specific effect based on an endocrine mode of action.

In the mammalian dataset, no pattern related adverse effects in endocrine-sensitive organs or endpoints was identified in the available OECD Level 4 & 5 *in vivo* toxicity studies. Based on that mammalian dataset, it is concluded that formic acid does not meet the endocrine disruptor criteria for humans regarding E,A, S and T modalities (see §**Erreur ! Source du renvoi introuvable.**).

The Guidance on ED states that due to the high level of conservation of the endocrine system and receptor homology across the vertebrates, as well as the key enzymes involved, the mammalian data may also be relevant for other vertebrates.

BPC-43-2022-07B

Considering all above mentioned arguments, it was agreed by the Biocides Environment Working Group Meeting IV-2019 (ENV WG-IV-2019) that no further vertebrate testing is needed to conclude on the endocrine disruptor criteria for other non-target organisms. Based on the evaluation of available data in a weight-of-evidence based approach, it is concluded that formic acid does not meet the endocrine disruptor criteria for non-target organisms regarding E,A, S and T modalities.

Value used in Risk Assessment		
Value/conclusion	Formic acid does not meet the endocrine disruptor criteria for both human health and non-target organisms.	
Justification for the value/conclusion	Conclusion agreed by the ENV WG-IV-2019 based on the evaluation of available data in a weight-of-evidence based approach.	

4.4 DERIVATION OF PNECS

Compartment	PNEC	Remarks/Justification
Freshwater	$PNEC_{freshwater}$: $\geq 2 mg/L$	<u>Organism:</u> Daphnia magna
		Endpoint: 21d NOEC \geq 100 mg/L
		Assessment factor: 50
		Extrapolation method: assessment factor
		<u>Justification</u> : The three taxonomic groups (fish, invertebrates, algae) are covered in short term data, of which Daphnia is considered as the most sensitive. A long-term NOEC for Daphnia is also available, and consequently the NOEC derived from the algal growth inhibition test is considered as an additional long-term study. An assessment factor of 50 is thus justified.
Freshwater sediment	PNEC _{sediment} : ≥ 2.87 mg/kg _{wwt}	Extrapolation method: Equilibrium partitioning method
	(converts to \geq 13.2 mg/kg _{dwt})	Justification: No specific data available or required
		<u>Note:</u> Since also the $PEC_{sediment}$ is calculated from the $PEC_{freshwater}$ using this method, the risk assessment and PEC/PNEC-ratio for the freshwater compartment are considered to cover the sediment compartment as well.
Saltwater	PNEC _{seawater} : > 0.2 mg/L	<u>Organism:</u> Daphnia magna
		Endpoint: 21d NOEC > 100 mg/L
		Assessment factor: 500
		Extrapolation method: assessment factor
		<u>Justification</u> : short term data for the basic three taxonomic groups (fish, invertebrates, algae) are available for both freshwater and saltwater species. No difference in sensitivity

BPC-43-2022-07B

Compartment	PNEC	Remarks/Justification
		between the aquatic species in both media was observed. Long-term effect data (NOEC/EC ₁₀) are available for two trophic levels (algae and crustaceans) covering the most sensitive trophic level (= crustaceans). Therefore, the use of an assessment factor of 500 is justified.
Saltwater sediment	PNEC _{marine-sediment} : > 0.143 mg/kg _{wwt}	Extrapolation method: Equilibrium partitioning method
		Justification: No specific data available or required
		<u>Note</u> : Since also the $PEC_{marine-sediment}$ is calculated from the $PEC_{seawater}$ using this method, the risk assessment and PEC/PNEC-ratio for the marine compartment are considered to cover the sediment compartment as well.
Soil	PNEC _{soil} : \geq 1.29 mg/kg _{wwt}	Extrapolation method: Equilibrium partitioning method
	(converts to \geq 1.47 mg/kg _{dwt})	Justification: No specific data available or required
		<u>Note:</u> The LOQ of the analytical method for soil established in the APCP section of this CAR is above the PNEC value for the soil compartment. Although not ideal, this is not a problem in the present case: the PNECsoil is determined using the equilibrium partitioning method (and not based on measured test concentrations), and the risk assessment is based on calculated PEC values.
Groundwater	Not applicable	General drinking water limit: 0.0001 mg/L
Air	Not determined	Not relevant
STP	PNEC _{STP} : > 50 mg/L	Organism: activated sludge
		Endpoint: 3h EC ₁₀ > 500 mg/L
		Assessment factor: 10
		Extrapolation method: assessment factor
		Justification: EC10 derived from OECD209

Compartment	PNEC	Remarks/Justification
Secondary poisoning birds	Not determined	No available data, but not considered relevant since no accumulation is expected
Secondary poisoning mammals	Not relevant	Risk assessment for secondary poisoning is not considered necessary, since no accumulation is expected.

5 ASSESSMENT OF EXCLUSION CRITERIA, SUBSTITUTION CRITERIA AND POP

5.1 EXCLUSION CRITERIA

5.1.1 Assessment of CMR properties

Criteria (BPR Article 5[1])	Assessment
Active substances which have been classified in accordance with Regulation (EC) No 1272/2008 as, or which meet the criteria to be classified as, carcinogen category 1A or 1B	Formic acid is not classified and does not meet the criteria to be classified as Carc. Cat. 1A or 1B.
Active substances which have been classified in accordance with Regulation (EC) No 1272/2008 as, or which meet the criteria to be classified as, mutagen category 1A or 1B	Formic acid is not classified and does not meet the criteria to be classified as Muta. Cat. 1A or 1B.
Active substances which have been classified in accordance with Regulation (EC) No 1272/2008 as, or which meet the criteria to be classified as, toxic for reproduction category 1A or 1B	Formic acid is not classified and does not meet the criteria to be classified as Repr. Cat. 1A or 1B.

Conclusion on CMR properties	The exclusion criteria in BPR Article 5(1)a-c are not met.
------------------------------	--

5.1.2 Assessment of endocrine disrupting properties

Criteria (BPR Article 5)	Assessment
Active substances which, on the basis of the criteria specified pursuant to the first subparagraph of paragraph 3 are considered as having endocrine-disrupting properties that may cause adverse effects in humans and to the environment.	The endocrine disrupting properties are assessed in accordance with the scientific criteria set out in COMMISSION DELEGATED REGULATION (EU) 2017/2100. Formic acid is not considered as having endocrine-disrupting properties that may cause adverse effects in humans and to the environment.

Conclusion on ED properties	The exclusion criteria in BPR Article 5(1)d are not met.
------------------------------------	--

5.1.3 PBT Assessment (following Annex XIII to Regulation (EC) No 1907/2006)

5.1.3.1 **Assessment of persistence**

5.1.3.1.1 Screening

The available data on degradation reveal that formic acid should be considered readily biodegradable.

5.1.3.2 **Assessment**

P Criteria	Assessment
T1/2 > 60 days in seawater, or	no experimental data
T1/2 > 40 days in fresh- or estuarine water, or	no experimental data
T1/2 > 180 days in seawater sediment, or	no experimental data
T1/2 > 120 days in freshwater- or estuarine sediment, or	no experimental data
T1/2 <= 120 days in soil.	no experimental data

vP Criteria	Assessment
T1/2 > 60 days in sea-, fresh- or estuarine water water, or	no experimental data
T1/2 > 180 days in seawater-, freshwater- or estuarine sediment, or	no experimental data
T1/2 > 180 days in soil.	no experimental data

		d on degradation data, formic acid is considered readily biodegradable. efore formic acid is considered not P or vP
--	--	--

5.1.3.3 **Assessment of Bioaccumulation**

5.1.3.3.1 Screening

The log octanol-water partitioning coefficient (Log K_{ow}) for formic acid was determined at -2.10 (23 °C, pH7). Formic acid is considered hydrophilic in nature.

5.1.3.3.2 Assessment

B Criteria	Assessment
BCF > 2000	no experimental data

vB Criteria	Assessment
BCF > 5000	no experimental data

Conclusion on B / vB properties	The log K_{ow} for formic acid is well below the screening criterion of 4.5 for
	bioaccumulation. Therefore formic acid is not considered B or vB.

5.1.3.4 Assessment of toxicity

5.1.3.4.1 Screening

The lowest available short term toxicity value for formic acid is the 48h EC₅₀ for daphnia equal to 540 mg/L, which is well above the screening threshold for short-term aquatic toxicity of 0.01 mg/L.

The lowest chronic endpoint is a 21d NOEC for daphnia of equal or greater than 100 mg/L.

5.1.3.4.2 Assessment

T Criteria	Assessment
NOEC/EC10 (long-term) < 0.01 mg/L for freshwater or seawater organisms, or	The lowest chronic endpoint is a 21d NOEC for daphnia of 100 mg/L, which is well above the criterium.
substance meets the criteria for classification as carcinogenic (category 1A or 1B), germ cell mutagenic (category 1A or 1B), or toxic for reproduction (category 1A, 1B or 2) according to the CLP Regulation, or	Formic acid does not meet the criteria for classification as carcinogenic (category 1A or 1B), germ cell mutagenic (category 1A or 1B), or toxic for reproduction (category 1A, 1B or 2) according to the CLP Regulation.
there is other evidence of chronic toxicity, as identified by the substance meeting the criteria for classification: specific target organ toxicity after repeated exposure	For formic acid there is no other evidence of chronic toxicity, as the substance does not meet the criteria for classification: specific target organ toxicity after repeated exposure
(STOT RE category 1 or 2) according to the CLP Regulation.	(STOT RE category 1 or 2) according to the CLP Regulation.

5.1.3.5 **SUMMARY AND OVERALL CONCLUSIONS ON PBT OR VPvB PROPERTIES**

5.1.3.5.1 Summary

- Formic acid is readilyy biodegradable
- Formic acid is hydrophilic and has no potential to bio-accumulate
- Formic acid is not classified for toxicity

5.1.3.5.2 Overall conclusion:

Based on the assessment described in the subsections above the submission substance is not a PBT / vPvB substance.

5.2 SUBSTITUTION CRITERIA

[Include an assessment if the active substance meets any of the following conditions:]

Substitution criteria (BPR, Article 10)	Assessment
One of the exclusion criteria listed in Article 5(1) is met but AS may be approved in accordance with Article 5(2)	For formic acid, the exclusion criteria in BPR Article 5(1)a-c are not met.
The criteria to be classified, in accordance with Regulation (EC) No 1272/2008, as a respiratory sensitiser is met	For formic acid, the criteria to be classified, in accordance with Regulation (EC) No 1272/2008, as a respiratory sensitiser are not met.
The acceptable daily intake, acute reference dose or acceptable operator exposure level, as appropriate, is significantly lower than those of the majority of approved active substances for the same product-type and use scenario	For formic acid, acceptable daily intake, acute reference dose or acceptable operator exposure level, as appropriate, are not significantly lower than those of the majority of approved active substances for the same product-type and use scenario
Two of the criteria for being PBT in accordance with Annex XIII to Regulation (EC) No 1907/2006 are met	No
There are reasons for concern linked to the nature of the critical effects which, in combination with the use patterns, amount to use that could still cause concern, such as high potential of risk to groundwater, even with very restrictive risk management measures	No
The AS contains a significant proportion of non-active isomers or impurities.	No

Conclusion on substitution criteria	The substitution criteria in BPR Article 10(1)a-f are not met.

5.3 ASSESSMENT OF LONG-RANGE ENVIRONMENTAL TRANSPORTATION AND IMPACT ON ENVIRONMENTAL COMPARTMENTS

Criteria	Assessment
The active substance or a degradation product is a persistent organic pollutant (POP) listed in Annex I of EC 850/2004	No
 Assessment of long-range transport potential (LRTAP): Vapour pressure <1000 Pa and half-life in air > 2 days or Monitoring data in remote area showing that the substance is found in remote regions or Result of multi-media modelling 	No
The active substance or a degradation product is vP/vB or T?	No

Conclusion on LRTAP/POP assessment	Formic acid does not meet the criteria for being a POP or LRTAP.
------------------------------------	--

<u>PART B</u> : EXPOSURE ASSESSMENT AND EFFECTS OF THE ACTIVE SUBSTANCE IN THE BIOCIDAL PRODUCT(S)

6 GENERAL PRODUCT INFORMATION

6.1 IDENTIFICATION OF THE PRODUCT

Name(s) of the product			
Trade name(s) or proposed Trade name(s)	Protectol® FM 85		
Manufacturer's development code and number of the product	Not applicable		
Formulation type	Water based concentrate / water soluble concentrate (SL)		

6.2 COMPLETE QUALITATIVE AND QUANTITATIVE COMPOSITION OF THE BIOCIDAL PRODUCT

Active sul	Active substance(s)					
ISO or Trivial name	IUPAC name or other accepted chemical name	EC number	CAS number	Composition / all constituents (upper and lower concentration limit in % (w/w))	Concentration in the product in % (w/w)	
Formic Acid	Methanoic Acid	200-579-1	64-18-6	Minimum 99% w/w purity (BASF)	85% w/w (pure)	

Other components / ingredients of the product					
ISO or Trivial name	IUPAC name or other accepted chemical name	EC number	CAS number	Concentration in in the product in % (w/w)	Function
Please refer to BASF PT4 Confidential Annex					

6.3 PHYSICAL, CHEMICAL AND TECHNICAL PROPERTIES

Table 6.3.1: Protectol® FM 85					
Property	Result	Test method applied or description in case of deviation	Remarks / Discussion / Justification for waiving	References	
Physical state at 20°C and 101.3 kPa (85%)	Liquid	Organoleptic	The biocidal product contains 85 % active substance with no other ingredients than water. These properties are expected to be similar as for the	Study no. 07L00084, (2007)	
Colour at 20°C and 101.3 kPa (85%)	Colourless	Organoleptic	active substance		
Odour at 20°C and 101.3 kPa (85%)	Pungent	Organoleptic			
Acidity / alkalinity (85%)	$pH_{85\% \text{ formic acid}} = -1.6$ At 1%: pH = 2.2	German Industrial Standard DIN 19268	Potentiometric measurement	Study no. 07L00172, (2007)	
	90.9530 ± 0.0663 % acidity	CIPAC MT 191	On 85% formic acid in water sample. Since test item is an acid, only acidity was tested.	Study no 16011907G975 (2016a)	
	рН = 2.18	CIPAC MT 75	At 24.8 °C On 1% aqueous solution of 85% formic acid sample	Study no 16011907G907 (2016c)	
Relative density (85%)	$D_4^{20} = 1.19522$	OECD 109	/	Study no. 02L00109, (2002)	

Accelerated storage	Waived	-	Protectol® FM 85 is to be regarded Since a long term storage test at ambient temperature is available, the BE CA accepted the waiver to not submit an accelerated storage study at this stage, however, for product authorization the applicant will have to provide such study (performed at 40°C).	-
Long term storage at ambient temperature (85%)	Shelf life of 20 months	Storage conditions: transparent glass bottle 1000 ml; illumination: day light; temperature: approx. 24 °C; pressure: 1013 hPa	Acceptable: variation of 0.1 % (85.31 versus 85.24 %) after 20 months long term storage for formic acid based product need to be demonstrated at product authorisation in the commercial packaging.	
Low temperature stability (liquids)	Waived	EC method A.1	Protectol® FM 85 is a liquid at 0 °C and starts to show crystallization not before -10 °C, therefore it is not expected that the storage of the biocidal product at 0 °C will change the stability of the product.	Study no. 02L00109, (2002) Statement on above study by 000000 on 13/09/2016 (BPR ID 3.4.1.3_01)
Effects on content	of the active substance	-		
Light	No effect	Long term storage at ambient temperature	Sample was stored in transparent glass bottle and subjected to daylight	(2007b)
Temperature and humidity	Waived	-	Boiling point = 107.3 °C Formic Acid 99% shows no signs of decomposition up to the boiling point Therefore the product can be considered stable at high temp.	Study no. 02L00109, (2002) Study no. 07L00084, (2007)

			Humidity is irrelevant since the product is an aqueous solution.	
Reactivity towards container material	Compatible: - stainless steel, types 1.4306, 1.4307, 1.4311, 1.4404, 1.4541, 1.4571 - plastics: different types of PE like HD-PE; PP (for plugs and caps) Not compatible: - carbon steel, paper, board	Based on experience with more concentrated solution of formic acid (99.4 %)	Formic acid and solutions of formic acid are acidic. Therefore, materials which are not sufficiently resistant towards acids should not be used to avoid equipment damage and spoilage of products Materials used at BASF for container material (container, bung, gaskets, sealing, venting devices): - polyethylene (Lupolen, Hostalen, Lucalen) - copolymer of ethylene and butylacrylate (Lucofin) - polypropylene (Moplen) - ethylene propylene diene monomer rubber (EPDM) - ethylene tetrafluoroethene (ETFE) Plastic parts in contact with product must only be made from virgin material (= without addition of regrind, recyclate and production waste) in order to avoid contamination with heavy metals. Applicant should provide suitable data at product authorisation stage.	(2007a)
Technical charact	eristics			
Wettability	Waived	-	Not applicable	-

1			7	, ,
Suspensibility, spontaneity and dispersion stability	Waived	-	Not applicable	-
Wet sieve analysis and dry sieve test	Waived	-	Not applicable	-
Emulsifiability, reemulsifiability and emulsion stability	Waived	-	Not applicable, Protectol® FM 85 is not an emulsion	-
Disintergration time	Waived	-	Not applicable	-
Particle size distribution, content of dust / fines, attrition, friability	Waived	-	Not applicable	-
Persistent foaming	Protectol® FM 85 is a non-foaming liquid solution	Experience in use	Information on persistent foaming would be necessary at product authorisation level if additional formulants are introducted in the composition.	(2007c)
Flowability, pourability, dustability	Waived	-	Not applicable	-
Burning rate – smoke generators	Waived	-	Not applicable	-
Burning completeness – smoke generators	Waived	-	Not applicable	-
Composition of smoke – smoke generators	Waived	-	Not applicable	-

Spraying pattern - aerosols	Waived	-	Not applicable	-
Other technical characteristics	Waived	-	Not applicable	-
Physical and cher	nical compatibility with	other products includ	ling other biocidal products with which its ues	is to be authorised
Physical compatibility	Waived	-	Not applicable, Protectol® FM 85 is not intended to be used in combination with	-
Chemical compatibility	Waived	-	other products	-
Degree of dissolution and dilution stability	Waived	-	As the active substance is highly soluble in water, no issue with stability in water is expected.	-
Surface tension	At 20 °C: 71.5 mN/m	OECD 115	Result for solution with 99.4 % formic acid. The Matrix other ingredients of Protectol® FM 85 As formic acid and water (at 20 °C: 72.75 mN/m) have almost identical surface tensions, no significant change of this value is expected for dilutions of formic acid	Study no. 07L00084, (2007)
Viscosity	Dynamic viscosity At 20 °C: 1.80 mPa.s At 40 °C: 1.22 mPa.s Kinematic viscosity At 20 °C: 1.47 mm ² /s At 40 °C: 1.02 mm ² /s	OECD 114	For more concentrated (99.4 %) formic acid	Study no. 07L00084 (2007)

	Dynamic viscosity At 20 °C: 1.61 mPa.s At 40 °C: 1.10 mPa.s Kinematic viscosity At 20 °C: 1.37 mm ² /s At 40 °C: 0.95 mm ² /s	Ubbelohde viscometer (glas), similar to DIN 51562	For more diluted (75 %) formic acid	Study no. 2014-209.
	Dynamic viscosity At 20 °C: 1.71 mPa.s At 40 °C: 1.18 mPa.s Kinematic viscosity At 20 °C: 1.42 mm ² /s At 40 °C: 0.99 mm ² /s	Expert judgement	Estimation for product Protectol® FM 85 with 85 % formic acid	/
Physical hazards a	nd characteristics			
Explosives (85%)	The substance is not explosive	UN Manual of Tests and Criteria (2010)	The substance has no chemical groups indicating explosive properties	(2006)
Flammable gases	Waived	-	Not applicable	-
Flammable aerosols	Waived	-	Not applicable	-
Oxidising gases	Waived	-	Not applicable	-
Gases under pressure	Waived	-	Not applicable	-
Flammable liquids	Not a flammable liquid Flash point = 73.5 °C	German Industrial Standard DIN EN ISO 2719, method A	For solution with 83 % formic acid	Study no. SIK-No.14/1849, (2015)

	Classified as Flammable Liquid 3 (H226)	(Pensky-Martens closed cup)		
Flammable solids	Waived	-	Not applicable	-
Self-reactive substances and mixtures (85%)	The substance is not self- reactive	UN Manual of Tests and Criteria (2010)	The substance has no chemical groups indicating explosive or self-reactive properties	
Pyrophoric liquids	Waived	-	Not a pyrophoric liquid, based on auto- ignition temperature (528 °C for 99.4 % formic acid) and experience in manufacture and handling	Study no. SIK-Nr.07/1018, (2007)
Pyrophoric solids	Waived	-	Not applicable	-
Substances and mixtures which in contact with water emit flammable gases	Waived	-	Not applicable	-
Oxidising liquids (85%)	The substance is not an oxidising liquid	UN Manual of Tests and Criteria (2010)	The compound contains oxygen but this element is chemically bonded only to carbon and hydrogen The compound does not contain any halogen atoms	(2006)
Oxidising solids	Waived	-	Not applicable	-
Organic peroxides	Waived	-	Not applicable	-
Corrosive to metals	Corrosive to steel	UN Test C.1 (37.4)	On 85% formic acid in water sample	Study no 16011907G979 (2016b)

Belgium

PT4

	Not corrosive to aluminium Classified as Corrosive to Metal (H290)			
	Compatible materials: - stainless steel, types 1.4306, 1.4307, 1.4311, 1.4404, 1.4541, 1.4571 Not compatible: - carbon steel Classified as Corrosive to Metal (H290)	Based on experience	On 99% formic acid	(2007a)
Auto-ignition temperature of products (liquid and gas)	Auto-ignition temperature: 528 °C (corrected according to EN 14522)	EC method A.15	Result for solution with 99.4 % formic acid. The only other ingredient of Protectol® FM 85 is water (15%)	Study no. SIK-Nr.07/1018, (2007)
Relative self-igniton temperature of solids	Waived	-	Not applicable	-
Dust explosion hazard	Waived	-	Not applicable	-

6.4 HAZARD IDENTIFICATION FOR PHYSICAL AND CHEMICAL PROPERTIES

The product **Protectol® FM 85** as manufactured is a colourless liquid with a pungent smell. The relative density of the product is 1.195 at 20 °C. The product has a long term stability of 20 months and is stable under cold storage conditions. Light influence is negligible. The surface tension is expected to be around 72 nN/m and the viscosity around 1.71 mPa.s. Physical and chemical compatibility with other products are not relevant.

6.5 ANALYTICAL METHODS FOR DETECTION AND IDENTIFICATION

Please note that only Formic acid and the formate ion are analysed in the monitoring table presented below

Analyte (type of	Analytical	Fortification	Linearity	Specificity	Recove	ry rate (°	%)	Limit of	Reference
analyte e.g. active substance)	method	range / Number of measurements			Range	Mean	RSD	quantification (LOQ) or other limits	
Active substance	The test principle for the determination of formic acid is titration of the organic acid with sodium hydroxide using an automated commercial titration system "Titrol alpha plus" from SI Analytics. The test item used for the validation was 100% formic acid (from VWR International GmbH, Darmstadt, Germany; certificate contained in the report), both as	5	r>0.99		-	-	-		(2017)

pure test item and diluted to 85% with				
water.				
In addition, GC- MS analysis was performed to confirm the identity of formic acid and to demonstrate the absence of any other				
interfering organic acid or other impurity.				
The study was conducted in accordance with SANCO/3030/99 rev. 4 and under GLP conditions. The procedure is sufficiently described in the				
sections above.				

Analytical methods for monitoring										
			Linearity	Specificity	Recovery rate (%)		Reference			

Analyte (type of analyte e.g. active substance)	Analytical method	Fortification range / Number of measurements			Range	Mean	Limit of quantification (LOQ) or other limits	
Depending on extra data request for a.s. (formic acid)	UV absorption (334, 340 or 365 nm)	7	r2= 0.99981	none	0.2 to 5 mg/L		0.2 mg/L	(2013)

Analytical method	Analytical methods for monitoring											
Analyte (type of analyte e.g. active substance)	method	Fortification range / Number of measurements	Linearity	Specificity	Recovery rate (%)			Limit of	Reference			
					Range	Mean	RSD	quantification (LOQ) or other limits				
Depending on extra data request for a.s. (formic acid)	UV absorption (334, 340 or 365 nm)	7	r2= 0.99981	none	0.2 to 5 mg/L			0.2 mg/L	(2013)			

Analytical methods for soil										
Analyte (type of analyte e.g.	Linearity	Specificity	Recovery rate (%)			Limit of quantification	Reference			
active substance)	method	range / Number of measurements			Range	Mean	RSD	(LOQ) or other limits		

a.s. (formic acid)	UV absorption after stochiometric , enzyme- catalyzed reduction of NAD+ to NADH by formic acid Formic acid (formate) is quantitatively oxidized to bicarbonate by nicotinamide adenine dinucleotide (NAD) in the presence of formate dehydrogenase (FDH). FDH Formate + NAD ⁺ + H ₂ O \rightarrow bicarbonate + NADH + H ⁺ The amount of NADH formed is stoichiometric to the amount of formic acid.	5- 50 mg/kg (25 number of measurements)	r2= 0.99981 <i>Linearity is</i> given in the range 0.2 mg formic acid /I sample solution to 200 mg formic acid/I sample	The method is specific for formic acid. Acetic acid, propionic acid, oxalic acid and L-ascorbic acid do not influence the determination. Formaldehyde reduces the reaction rate but does not influence the specificity of the method."	Fortification range 5-50 mg/kg	RR 5 mg/L: 31% RR 10 mg/kg: 85% RR 50 mg/kg: 93%	4.7 (at 50 mg/kg)	10 mg/kg	(2013)
--------------------	--	---	---	--	--------------------------------------	--	-------------------------	----------	--------

	·			r	I
The increase in					
NADH is					
measured by					
means of its					
light					
absorbance at					
334, 340 or					
365 nm. The					
molar					
extinction					
coefficient is					
large at 340					
nm [ϵ = 6.3					
L/(mmol x c)],					
i.e. the					
method is					
most sensitive					
at this					
wavelength.					
The extinction					
coefficient					
allows to					
calculate the					
formate					
concentration					
from the					
absorbance					
difference at					
the start and					
at the end of					
the reaction,					
which is a					
common					
method in					
biochemical					
laboratories.					

Belgium

BPC-43-2022-07B

	Photometric				
	neasurements				
	provide the				
	asis for the				
n	najority of				
	uantitative				
	nethods in				
	oiochemistry				
	nd are				
	elated to the				
	mount of				
	ght absorbed.				
	The				
	emperature				
	ange should				
	e 20-25°C,				
	he pH value				
	t approx. 7.5.				
7	The specificity				
	of the method				
	s based on				
	he specificity				
	of the enzyme				
	or its				
	ubstrate				
	known as				
	key-lock				
ļ P	orinciple").				

Analytical methods for air

275 / 411

Analyte (type of		Fortification	Linearity	Specificity	Recove	ery rate (%)	1	Limit of	Reference
analyte e.g. active substance)	method	range / Number of measurements			Range	Mean	RSD	quantification (LOQ) or other limits	
Depending on extra data request for <i>a.s.formic acid</i>	Ion Chromatography Material and conditions: Ion chromatographer DIONEX DX 120 with conductivity detector and autosampler. Pre-column: Micro-Guard Cation H- Cartridge (Bio- Rad, Munich). Column: Aminex HPx-87H (Bio- Rad). Suppresor: AMMS-ICE II P/N 037107 (Dionex). Suppressor solution: Tetrabutyl ammonium hydroxide, 5 mM. Eluent: hydrochloric acid 0.15 mM. Flow rate 0.6 mL/min. Flow rate suppressor: 1 mL/min Injection	6 (per concentration)	Formic acid, 1.2 to 47.8 mg/L.	Specificity depends on the column and eluant chosen, and also on the separation condition.	94%- 95%	95% RR for 0.9mg/m3	9.7% for 0.9 mg/m3 fortification level	Absolute: 0.1µg; relative: 0.12 mg/m3 formic acid for a 140 l air sample, 10 ml absoption volume and 50 µl injection volume	2007

volume: 50 µL.				
Temperature: room				
temperature.				

Analytic	al methods f	or water											
Analyte	Analytical	Fortificatio	Linearity	Specific	Recov	very rate (%)					Limit of quantificat	Referen ce
(type of analyte e.g. active substan ce)	method	n range / Number of measureme nts	Number of neasureme its	ity	Ran ge				RSD			ion (LOQ) or other limits	
Active substanc e formic acid	UV absorption after stochiometr ic , enzyme- catalyzed reduction of NAD+ to NADH by formic acid Formic acid (formate) is quantitative ly oxidized to bicarbonate	of the four fortification	range 0.2 to 5 mg/L. $R^2 = 0.9997$ for the regression curve for all measureme nts given in the range 0.2 to 5 mg/L. $R^2 =$ 0.99998 for the	e specific for formic acid)	0.2 to 5 mg/ L	Fortificati on level [mg/L] 0.2 0.5 2 5	Recove ry [%] Drinkin g water 103 91 103 101	Recove ry [%] Surfac e water 100 n.d. 81 78	Fortificati on level [mg/L] 0.2 0.5 2 5	Rel SD[%] Drinki ng water 17 2.4 6.6 3.7	Rel SD [%] Surfa ce water 7.7 n.d. 1.6 1.7	0.2 mg/L in drinking water and surface water	(2013)

by		evels) and	measureme			
by	tinamid bl	lanks	nts			
		Idliks	nts			
	enine					
	cleotide					
	D) in					
the						
	ence of					
form	nate					
dehy	ydrogen					
ase	(FDH).					
	. ,					
FDH						
	nate +					
NAD						
	→					
	rbonate					
	ADH +					
H ⁺						
11						
The	amount					
of N						
	ned is					
	chiomet					
	o the					
	unt of					
	nic acid.					
The						
	ease in					
NAD						
	sured					
	neans					
of its	s light					
abso	orbance					
at 33	34, 340					
or 30	65 [°] nm.					
	molar					
L L						

	r r			
extinction				
coefficient				
is large at				
340 nm [e=				
6.3				
L/(mmol x				
c)], i.e. the				
method is				
most				
sensitive at				
this				
wavelength.				
The				
extinction				
coefficient				
allows to				
calculate				
the formate				
concentrati				
on from the				
absorbance				
difference				
at the start				
and at the				
end of the				
reaction,				
which is a				
common				
method in				
biochemical				
laboratories				
•				
Photometric				
measureme				
nts provide				
the basis				

Belgium

PT4

T	 1		1 1	1
for the				
majority of				
quantitative				
methods in				
biochemistr				
y and are				
, related to				
the amount				
of light				
absorbed.				
The				
temperatur				
e range				
should be				
20-25°C,				
the pH				
value at				
approx.				
7.5. The				
specificity				
of the				
method is				
based on				
the				
specificity				
of the				
enzyme for				
its				
substrate				
(known as				
"key-lock				
principle").				
r - r - y				

Analyte (type of	Analytical method	Fortification	Linearity	Specificity	Recove	ry rate (%)	Limit of	Reference
analyte e.g. active substance)		range / Number of measurements			Range	Mean	RSD	quantification (LOQ) or other limits	
Active substance formic acid	UV absorption Formic acid (formate) is quantitatively oxidized to bicarbonate by nicotinamideadenine dinucleotide (NAD) in the presence of formate dehydrogenase (FDH). FDH Formate + NAD ⁺ + H ₂ O \longrightarrow bicarbonate + NADH + H ⁺ The amount of NADH formed is stoichiometric to the amount of formic acid. The increase in NADH is measured by means of its light absorbance at 334, 340 or 365 nm.	n.a.	Linearity is given in the range 0.2 mg formic acid/I sample solution to 200 mg formic acid/I sample solution (cf. full test description in Section A4.1_01).	yes	0.2 mg/L to 200 mg/L	100%	0.48- 2.40%	0.2 mg/L	Anonymous (2007) UV test for the determinatio of Formic Aci in foodstuffs and other materials, Roche commercial test combination, R-Biopharm, Cat. No. 10 979732 035

NADH and NADPH absorb in the long- wave UV-range with a maximum at 340 nm, whilst the oxidized forms (NAD and NADP) do not show any absorption at this wavelength (see Figure 3). Therefore, any reaction in which either NAD(P) is reduced or NAD(P)H is oxidized may be measured by recording the change in absorption in this wave length range.					
---	--	--	--	--	--

Analytical methods	Analytical methods for monitoring of active substances and residues in food and feeding stuff											
Analyte (type of An analyte e.g. active substance)		Fortification range / Number of measurements	-		Recove Range	ry rate (%) Mean	RSD	Limit of quantification (LOQ) or other limits	Reference			

ni di in	oxidized to bicarbonate by hicotinamideadenine dinucleotide (NAD) n the presence of formate	range 0.2 mg formic acid/l sample solution to 200	mg/L	fortification level 10 mg/L and 101% at fortification level 50 mg/L	and 0.9 % at 50	
(F FL Fc H; bi	dehydrogenase (FDH). Formate + NAD ⁺ + H ₂ O \longrightarrow Dicarbonate + NADH + H ⁺	mg formic acid/l sample				
N/ st ar ac N/ by at 34 m cc at L/ th se	The amount of NADH formed is stoichiometric to the amount of formic acid. The increase in NADH is measured by means of its light absorbance at 334, 340 or 365 nm. The molar extinction coefficient is large at 340 nm [ϵ = 6.3 _/(mmol x c)], i.e. the method is most sensitive at this wavelength. The					

coefficient allows to calculate the formate concentration from the absorbance difference at the start and at the end of the reaction, which is a common method in biochemical laboratories.				
Photometric measurements provide the basis for the majority of quantitative methods in biochemistry and are related to the amount of light absorbed				

Additional remarks:

According to the guidance on residue analysis in soil "The LOQ must be below the PNEC water if technically possible". In the present case it was not technically possible to achieve an LOQ below 5 mg/L.

For drinking water it is suggested that the stringent limit and corresponding analytical LOQ of 0.1µg/L for bioicides should not be relevant for formic acid. Formic acid is a naturally occurring substance, which is expected to be present in drinking water from many other, also natural sources other than only via biocide use

Methods analysis for body fluids: Body fluids was not validated as according to the guidance such method is not necessary for substances that are not toxic or very toxic (systemic toxicity)

7 EFFICACY

Products containing FORMIC ACID are intended to be used for PT4 applications as broad spectrum surface disinfectants against bacteria yeasts and fungi.

The products are intended to be used for surface/equipment disinfection by professionals/industrial users via concentrated formulations to be diluted.

In the context of a decision on the approval of FORMIC ACID for PT4 applications, 2 intended uses are considered : surface disinfection via CIP (with circulation – totally enclosed procedure) or trigger spraying procedures.

In the context of a decision on the approval of FORMIC ACID, in order to assess the microbicide activity of FORMIC ACID-based products, the Applicant **BASF SE** has submitted many documents:

> Among them, a lot of documents are scientific papers with reliability 3-4.

Due to lack of critical information or to data so succinctly reported, these documents are not robust enough to state efficacious concentrations usable to perform the risk assessment.

Information from these documents is not taken into account and is not reported into the table below, but reported in Doc IIIB as additional information.

- Two scientific publications reviewing some information about mode of action of FORMIC ACID; one scientific publication reviewing the resistance potential of FORMIC ACID and one document giving information about pH of FORMIC ACID solutions (Document BPR_6.7_06 "pH measurements of solutions of **Protectol® FM 85** in hard water Technical Report BIO15_014-EX"confidential information).
- > Among the remaining documents, we could find :
 - One report from efficacy tests performed according to the EN 1040 with reliability 3 due to lack of raw data. Then, these results are not taken into account and are not reported into the table below.
 - One report from an efficacy test performed according to EN phase 2/Step 1 EN standards (EN 1276 and EN 1650) and one report from an efficacy test performed according to the EN 13697 standard :

Both efficacy tests have been performed on the product *Protectol***®** *FM 85*) and are summarised into the table below.

The results from the efficacy tests performed according to EN phase 2/Step 1 standards (suspension tests – i.e. EN 1276 and EN 1650) are taken into account to support basic efficacy of FORMIC ACID-based products for PT4 claims and the results from the efficacy test performed according to the EN 13697 standard is taken into account to support efficacy of FORMIC ACID-based products for "surface disinfection" PT4 claims.

7.1 EFFICACY

CONFIDENTIAL INFORMATION : Since the mode of action of Formic Acid is dependent on a low pH and could influence the efficacy of the product, refer to the *PT2 Confidential Annex* to have information about the measured pH-values of the different % of the representative product *Protectol*® *FM 85*. Confidential data also available in the doc. "*BIO15-014-ex_pH measurements", embedded in* the *PT2 Confidential Annex* (*p. 22*).

Experimental data on the efficacy of the biocidal product against target organism(s)										
Function	Field of use envisaged	Test substance Test organism(s) Test method Test system / concentrations applied / exposure time Test results: effects					Reference			
Bactericidal Fungicidal/ yeasticidal	PT2	Protectol® FM 85 (85% formic acid)	Enterococcus hirae E.coli Pseudomonas aeruginosa Staphylococcus aureus Aspergillus brasiliensis Candida albicans	EN 1276 EN 1650	Test concentrations : 5.88; 3.53 and 1.17% (corresponds to 5; 3 and 1% Formic Acid) Test temperature : +20°C ±+1°C Contact time : Bacteria : 5 min Fungi & yeasts : 15 min Organic loading : 0.3% BSA (dirty conditions)	Product : Protectol® Contact time : 5 or Interfering substan Test temperature : Concentration (%) Test Strain S. aureus E. coli E. hirae P. aeruginosa Candida albicans Aspergillus brasiliensis	15 min 1ce : 0.		(dirty) 1.17 1.76 5.42 0.71 5.39 3.80 2.77	Doc IV-BPR_6.7_05 L+S Code : 0543119 (2016) "Quantitative suspension test for the evaluation of microbicidal efficacy according to EN 1276 and EN 1650" Key study R.1

						At +20°C, in suspe conditions (0.3% B Protectol® FM 85 - Bactericidal in 5 r FORMIC ACID) - Yeasticidal in 15 r FORMIC ACID) - Fungicidal in 15 n FORMIC ACID)	SA), the is : nin at 5.8 min at 3.	test-pr 38% (5 53% (3	oduct % %	
Bactericidal Fungicidal/	PT2	Protectol® FM 85 (85% formic acid)	Enterococcus hirae E.coli	EN 13697	Test concentrations	Product : Protectol	R FM 85			Doc IV- 1089285_13697_Ver
yeasticidal			<i>Pseudomonas aeruginosa Staphylococcus</i>		8.24; 5.88 & 3.53 (corresponds to 7; 5 and 3% Formic	Contact time : 5 or 15 min				sion01 L+S Code: 1800411- 0321-001
			aureus Aspergillus niger Candida albicans		Acid) <u>Test temperature :</u> +18°C - +25°C	Test temperature Test Concentration (%) Test Strain	8.24	5.88	3.53	"Quantitative surface test for the
					Contact time :	S. aureus	6.76	6.76	6.76	<i>evaluation of bactericidal and</i>
					<u>Contact time :</u> Bacteria : 5 min	E. coli	6.70	6.70	6.70	<i>fungicidal efficacy</i> <i>according to EN</i>
					Fungi & yeasts : 15	E. hirae P. aeruginosa	6.59 6.37	6.59 6.37	1.40 6.37	13697"
					min	Candida albicans	5.77	5.77	5.77	Key study
					Organic loading : 0.3% BSA (dirty conditions)	Aspergillus brasiliensis	5.69	5.69	5.69	R.1
					At +20°C, on hard/non-porous surfaces in dirty conditions (0.3% BSA), the product Protectol® FM 85 is :					
						 Bactericidal in 5 min at 5.88% (5% FORMIC ACID) Yeasticidal in 15 min at 3.53% (3% FORMIC ACID) 				

						- Fungicidal in 15 m FORMIC ACID)	in at 3.	53% (3	%	
Bactericidal	PT2	Product BIO20- 068-06 (55% formic acid) / Product BIO20- 068-07 (Placebo formulation wo formic acid)	Enterococcus hirae E.coli Pseudomonas aeruginosa Staphylococcus aureus	EN 1276 EN 1650	Test concentrations 2.73; 2 and 0.91% Test temperature : +20°C ±+1°C Contact time : 5 min Organic loading : 0.03% BSA (CLEAN conditions)	Fungicidal in 15 min at 3.53% (3% FORMIC ACID)TEST- Product : BIUUU-068-06 (55% formic acid)Test formic acid)2.73 2.000.91 0.91Concentration (%)2.732.000.91Test Strain2.732.000.91S. aureus > 5.42 $<$ E. coli > 5.46 $<$ E. hirae > 5.39 $<$ P. aeruginosa > 5.29				Doc "BASF_FA_efficay_2 021_201202_0259_ 001 and 002_1276_CleanCon ditions_e_Version01" CO21b) Supportive data ONLY
						TEST- Product : BI (Placebo wo formic Test Concentration (%) Test Strain	c acid)	68-07 2.00	0.91	
						S. aureus	>	5.42	3.08	
						E. coli	< 0.79			
						E. hirae	>	5.39	2.25	
						P. aeruginosa	< 0.62			
						At +20°C, in susper conditions, a formul bactericidal in 5 min FORMIC ACID).	lated product is			

Yeasticidal	PT2	Product BIO20- 068-06 (55% formic acid) / Product BIO20-	Candida albicans	EN 1650	<u>Test concentrations</u> <u>:</u> 2.73; 2 and 0.91%	TEST- Product : BI (55% formic acid)	020-0	68-06		Doc "BASF_FA_efficay_2 021_201202_0259_ 003 and
		<i>068-07</i> (<i>Placebo</i> <i>formulation wo</i> <i>formic acid</i>)			<u>Test temperature :</u> +20°C ±+1°C	Test Concentration (%) Test Strain	2.73	2.00	0.91	006_1650_CleanCon ditions_e_Version01" (2021a)
					<u>Contact time :</u> 5 min	C. albicans		> 4.42		Supportive data ONLY
					<u>Organic loading :</u> 0.03% BSA (CLEAN	TEST- Product : BI (Placebo wo formic		68-0 <i>7</i>		
					conditions)	Test Concentration (%) Test Strain	2.73	2.00	0.91	
						C. albicans	3.15	2.77	0.63	
						At +20°C, in suspen conditions, a formula yeasticidal in 5 min FORMIC ACID).	ated pr	oduct is		

According to the section #4.2.2.1(p.28) of the BPR guidance (Vol. II - Parts B+C - 2018), an extensive data package and evaluation is not required at this approval stage.

<u>As a conclusion, taking into account the results of all the efficacy tests provided by the</u> <u>Applicant (Phase2/Step1 suspension tests & Phase2/Step2 surface test)</u>, the product **Protectol® FM 85** is :

- Bactericidal in suspension at 5.88% (5% FORMIC ACID) at +20°C in dirty conditions (0.3% BSA) in 5 min according to the EN 1276 standard.
- Fungicidal/yeasticidal in suspension at 3.53 % (3% FORMIC ACID) at +20°C in dirty conditions (0.3% BSA) in 15 min according to the EN 1650 standard.
 - ⇒ For CIP procedures (with circulation), only results from P2S1 tests should be considered and showed that the product *Protectol*® *FM 85* is at least bactericidal at 5.88% (5% FORMIC ACID) in 5 min at +20°C in dirty conditions. Using the same concentration, the fungicidal/yeasticidal activity is achieved with a 15 min contact time.
- Bactericidal on hard/non-porous surfaces at 5.88% (5% FORMIC ACID) at +20°C in dirty conditions (0.3% BSA) in 5 min according to the EN 13697 standard.
- Fungicidal/yeasticidal on hard/non-porous surfaces at 3.53 % (3% FORMIC ACID) at +20°C in dirty conditions (0.3% BSA) in 15 min according to the EN 13697 standard.
 - ⇒ For surface disinfection by trigger spraying, both results from P2S1 & P2S2 tests should be considered and showed that the product **Protectol® FM 85** is at least bactericidal at 5.88% (5% FORMIC ACID) in 5 min at +20°C in dirty conditions. Using the same concentration, the fungicidal/yeasticidal activity is achieved with a 15 min contact time.

<u>FOR INFORMATION</u> : Efficacy tests performed on a "real" formulation (including co-formulants) have been provided by the Applicant BASF (reported in the table above – highlighted in grey/italic) in order to demonstrate that addition of co-formulants (wo impact on efficacy) could likely permit the use of lower FA concentrations : indeed, both efficacy tests (suspension tests) showed that a formulated FA-based product is bactericidal and yeasticidal at 0.91% (0.5% FORMIC ACID) in 5 min at +20°C in clean conditions.

7.2 MODE OF ACTION

The biocidal activity of FORMIC ACID, i.e. acidulant action and corrosion which causes enzyme denaturation and inhibition, cellular structure disruption, and impairment of cellular metabolic pathways.

This mode of action is considered to depend on the low pH-value. Secondly, formic acid does inhibit cytochrome C oxidase and thus impairs cellular energy supply. Organisms and tissues with a high energy demand are specifically susceptible :

- 1. Acidulant : acidification of cytoplasm;
- 2. Inhibitor for decarboxylases and haemin enzymes such as catalase;
- 3. Organic acids in general may disrupt the proton-motive force, as well as inhibit substrate transport, energy-yielding processes and macromolecular synthesis.

Acidulant action is responsible for formic acid being most effective at lower pH values (below 3.5), but enzyme inhibition and other modes also provide some antimicrobial action at higher pH values. Enzyme inhibition is less significant in the control of fungi; therefore, higher concentrations of formic acid are needed to control fungi. The activity of formic acid against some viruses is presumably explained by the action of acid in denaturing polypeptide chains.

- Acidulant action: Organic acids cross cell membranes, leading to acidification of the cytoplasm.

- Formate inhibits cytochrome oxidase (terminal oxidase in electron transport chain), reducing ATP synthesis and thus availability of energy. Inhibition of cytochrome oxidase leads to increased production of reactive oxygen species (ROS), causing oxidative burst and damage of cell compartments. Low concentrations of formic acid were reported to induce apoptosis (-like) programmed cell death in *Saccharomyces cerevisiae* and *Candida* species.

7.3 RESISTANCE

There is no adaptation to cope with acidic pH values or denaturated proteins, nor is there a mechanism known to exist that a sub-lethal energy supply, due to an incomplete cytochrome C oxidase inhibition, would lead to undesired side-effects or resistance against this inhibitor.

No incidence of resistance to formic acid has been recorded until now.

7.4 CONCLUSION ON EFFICACY

In conclusion, the data submitted are sufficient to demonstrate efficacy of FORMIC ACID for disinfection of hard/non-porous dirty surfaces via CIP (with/without circulation) or trigger spraying procedures against bacteria (with the exception of spore-forming bacteria and mycobacteria) and fungi/yeasts for PT4 intended uses, and are therefore sufficient for the inclusion.

The efficacy studies submitted, performed according to phase 2 step 1 & phase 2 step 2 tests CEN standards (suspension & surface tests), are capable of demonstrating the bactericidal and fungicidal/yeasticidal activity of FORMIC ACID and are robust enough to state efficacious concentrations (for disinfection of hard/non-porous dirty surfaces via spraying or CIP procedures) usable to perform the risk assessment :

For disinfection of hard/non-porous surfaces via spraying or CIP procedures, the product **Protectol® FM 85** (based on 85% FORMIC ACID) is <u>BACTERICIDAL</u> (with the exception of spore-forming bacteria and mycobacteria) at **5.88 %** (\Leftrightarrow 5% FORMIC ACID) in 5 min in dirty conditions (0.3% BSA). Using the same concentration, the FUNGICIDAL/YEASTICIDAL activity is achieved with a 15 min contact time.

8 HUMAN EXPOSURE ASSESSMENT

Default values and exposure models were taken from the document 'Biocides Human Health Exposure Methodology' and Recommendation no. 6 of the BPC Ad hoc Working Group on Human Exposure (from this point forward referred to as 'Recommendation 6'), unless otherwise stated.

Protectol® FM 85 (85% formic acid) is diluted with water prior to application for cleaning-in-place (CIP)disinfection. Its use in RTU sprays is also foreseen (see table 8.1 for specified in-use concentrations).

The biocidal product, Protectol® FM 85 is applied:

- to disinfect inner food contact surfaces such as mixing and storage tanks associated with production.

- to disinfect small surfaces in a professional environment for the preparation, storage and consumption of food, feed and drink for humans and animals.

- to disinfect small surfaces where food is handled including the retail environment.

Intended uses

For the purpose of the Human Exposure Assessment for PT4, the following typical uses as specified by the applicant will be taken into consideration (see table 8.1).

The information pertaining to the intended product concentrations and the users is summarized below. Detailed descriptions are contained in the relevant sections on exposure (8.3 - 8.8).

Product type	Field of use envisaged	Users	Likely concentration at which a.s. will be used
PT 4 (Food and feed disinfectants)		Professional	Formulated concentrate 85% a.s.; dilute to
	Small surface disinfectant, RTU trigger spray		0.5-5 % a.s. (= 0.59% to 5.9% of Protectol® FM 85); 18 ml/m ²
	clean-in-place		0.5-5 % a.s. (= 0.59% to 5.9% of Protectol® FM 85); recirculated

Table 8.1 C	Overview of intended	uses and in-use	concentrations
-------------	----------------------	-----------------	----------------

Disinfection of small surfaces

For the disinfection of food contact surfaces within food and feed processing, an aqueous solution containing Protectol® FM 85 is applied by trigger spraying.

Protectol® FM 85 is diluted into products containing between 0.5% and 5% of formic acid (= 0.59% to 5.9% of Protectol® FM 85) and applied to pre-cleaned surfaces. The application rate is typically 18 ml diluted product/ m^2 .

Food preparation surfaces may be cleaned and disinfected up to three times per day. Waiting periods of at least two hours are advised after application. Good ventilation is required to minimise waiting periods.

Clean-in-place (CIP)

Pipelines and vessels are disinfected by totally enclosed Clean-in-place (CIP) systems where the disinfectant is captured and re-circulated. Protectol® FM 85 is diluted in-system to between 0.5% and 5% of formic acid (= 0.59% to 5.9% of Protectol® FM 85). CIP is run after each production batch. This may vary from several times per week to several times per day.

The representative products in this CAR are intended for professional use and in professional premises only where secondary exposure of the general public does not occur. For the general public, at product authorisation stage, secondary exposure via the dermal, oral and inhalation route will have to be considered, or alternatively, the intended uses may have to be restricted by appropriate RMM.

8.1 IDENTIFICATION OF MAIN PATHS OF HUMAN EXPOSURE TOWARDS ACTIVE SUBSTANCE FROM ITS USE IN BIOCIDAL PRODUCT

	Summary table: relevant paths of human exposure						
	Primary (direct) exposure			Secondary (indirect) exposure			
Exposure path	Industrial use	Professional use	Non- professional use	Industrial use	Professional use	General public	Via food
Small surfa	Small surface disinfection by RTU trigger spray						
Inhalation	n.a.	Yes	n.a.	n.a.	Yes	no	no
Dermal	n.a.	Yes	n.a.	n.a.	negligible	no	no
Oral	n.a.	No	n.a.	n.a.	no	no	negligible
Clean-in-place							
Inhalation	n.a.	Yes	n.a.	n.a.	yes	no	no
Dermal	n.a.	Yes	n.a.	n.a.	no	no	no
Oral	n.a.	No	n.a.	n.a.	No	no	negligible

For Product Type 4, the biocidal product is handled and used by professionals only. Formic acid is used in professional environments in food and feed areas to disinfect small surfaces. During and after spraying the facilities must be well ventilated (for at least 2 hours following disinfection). Pipelines and vessels are disinfected by totally enclosed cleaning-in-place (CIP) systems where the disinfectant is re-circulated. Professionals are only exposed during the mixing and loading phase of the CIP application.

There is potential for inhalation and dermal exposure to professionals during application of the biocidal product. For most applications where contact with the BP or its dilutions is possible, the operators should wear protective equipment: gloves, safety glasses, and coveralls where appropriate. RPE are advised when handling the formic acid concentrate in conditions of insufficient ventilation. Also, the eCA suggests to use increased ventilation as additional RMM.

The maximum concentration of formic acid in the applied in-use solution is 5%.

Secondary inhalation exposure (inhalation of volatilized residues) is possible for professionals after re-entry of the treated premises. It will be discussed in the risk assessment for the trigger spraying application. Secondary dermal exposure for professionals (touching of treated surfaces) can be considered negligible due to the

volatility of formic acid and the required ventilation. For CIP, inhalation of vapours by professional bystanders is possible during the mixing and loading phase.

Secondary dermal and oral exposure for bystanders (general public - adults and children) through touching or mouthing of treated surfaces is not considered here as they are not expected to enter treated areas in a professional setting.

An assessment for secondary exposure via food may be considered necessary at product level. However, After CIP disinfection a rinsing step with water of drinking water quality is usual and recommended. Also suggested is a rinsing step after the required contact time for RTU trigger spraying. According to the applicant indirect exposure to formic acid is unlikely to be significant due to the volatility of formic acid and it's expected rapid degradation. Nevertheless, at product level, it should be assessed whether there is potential of secondary oral exposure via food to the general public.

The assessment of exposure towards formic acid as active substance in product type 4 disinfectants is based on information provided by the applicant. Possible gaps are bridged by the Rapporteur using reasonable assumptions. For lack of measurement data, exposure models are applied.

In view of the high vapour pressure of Formic Acid (4271 Pa for 99% formic Acid at 20°C), exposure to vapours should be assessed when relevant for the scenario. eCA BE uses the ConsExpoWeb Exposure to Vapour model, taking into account the in-use dilution concentration and the vapour pressure of the pure active substance. The applicant prefers to use the estimated vapour pressure of the in-use dilution. However, since applying the vapour pressure of the pure active substance is a reasonable-worst-case calculation, use of the pure active substance's vapour pressure should be maintained, at least as a first tier approach.

8.2 LIST OF SCENARIOS

Summary	Summary table: scenarios						
Scenario number	Scenario (e.g. mixing/ loading)	Primary or secondary exposure Description of scenario	Exposed group (e.g. professionals, non- professionals, bystanders)				
1.	Small surface disinfection by RTU trigger spray	1.application of the RTU solution by trigger spray	professionals				
2.	CIP	2a.primary exposure during mixing and loading by professionals, dosing	Professionals				
		2b.application: cleaning-in-place process					
		2c. maintenance and repair, disposal of containers					
3.	Secondary exposure	Inhalation exposure after entry of treated area (small surface – trigger spray)	Bystanders (professionals)				
4.	Secondary exposure	inhalation exposure for CIP professional bystander	Bystanders (professionals)				

8.3 INDUSTRIAL EXPOSURE

This section has not been evaluated by the CA-BE because the production/formulation process of the active substance is outside the scope of the Biocidal Products Regulation (EU) No 528/2012.

Protectol® FM 85 is manufactured on the BASF SE site in D-67058 Ludwigshafen, Germany. Exposure of manufacturing workers is governed by industrial legislation and controlled by the use of automated processes. The active substance is rigorously contained by production methods and the use of personal protective equipment so that direct exposure of manufacturing workers is prevented.

Formic acid is produced in a production plant and further processed within other operations. Formic acid is produced within a closed system. A total of 138 workplace measurements have been conducted during the period 2001-2006, covering all kinds of operations (production, filling, processing, laboratory). All reported results represented 8 hours shift average values (TWA) obtained by personal air sampling. None of the measurements exceeded the threshold limit of 5 ppm or 9.6 mg/m³ (most well below). To prevent direct skin contact, protective gloves (neoprene or nitrile rubber) must be used. According to the applicant workplace exposure is low, due to the appropriate protective measures taken (DocIIIA6.12.1-01: 2006).

Four cases of accidental skin and eye contact were seen during 14 years (1989-2002) of operation of the BASF's production plant. Lesions of skin and eye were seen following facial splashes (3 cases) during filling operations and transportation, and one case of skin lesions following contact with contaminated wood (DocIIIA6.12.3-01: 1994, 2002).

Nevertheless, exposure estimates for industrial workers during these stages have not been calculated as they are already addressed by other legislation. Therefore, in accordance with the Commission Document agreed at the 22nd CA meeting in September 2006, detailed information on exposure associated with the manufacturing process is not required for biocidal product risk assessment.

8.4 PROFESSIONAL EXPOSURE

The biocidal product, Protectol® FM 85, available for professional operators is a concentrated product containing 85% formic acid to be further diluted to the recommended use concentration of 0.5 to 5% for trigger spraying and application by CIP. Professionals use products on a prolonged basis and are exposed daily to mixing and loading, and spraying.

General default values:

parameter	Default value
Body weight adult (prof/consumer)	60 kg
Respiration rate adult	1.25 m³/h
Oral absorption	100%
Dermal absorption	100%
Inhalation absorption	100%

PRIMARY EXPOSURE

8.4.1 Scenario 1: Small surface disinfection by RTU trigger spray

Disinfection of small surfaces: food contact surfaces and other environmental areas within food and feed processing, by RTU trigger spray.

Description of Scenario 1

Task, exposure model and parameters:

Manual use of RTU trigger spray on pre-cleaned small surfaces. No wiping or rinsing, product is left to air-dry.

Concentration of a.s. in biocidal product: 5%

Application rate: 18 ml/m²

Density of product: ca. 1000 $g/L^{(1)}$

Frequency: 4x/day (2)

Application duration: 2 min⁽²⁾

Duration of exposure: 120 min⁽²⁾

Treated surface: 1 m² (2)

Exposed worker: professional

Room volume: 25 m^{3 (2)}

Ventilation rate: 15/h⁽²⁾

Protective equipment: see qualitative RA.

Model: dermal: N.R., product is left to air-dry

Inhalation: ConsexpoWeb (v 1.1.0), exposure to spray; instantaneous release ⁽³⁾ As the biocidal product is in the form of a RTU spray, no calculations are provided for a mixing and loading scenario.

	Parameters	Value
Tier 1	Hand	
		Not considered in quant RA
	body	Not considered in quant RA
	Daily application duration	8 min (4x/d * 2 min)
	Ventilation rate	15/h

(1) aqueous solution

(2) CAR propan-2-ol

⁽³⁾ The 'exposure to spray – instantaneous release' model describes the exposure to formic acid both in aerosol and vapour phase. It is assumed that assessing the spray exposure would also cover for the cleaning exposure through inhalation (in case of same user).

Model: ConsexpoWeb, evaporation, area of release increases over time

Tier 1, exposure to vapour:

For full ConsExpo reports see Appendix II

Inhalation	5% dilution
Mean event concentration	1.2 mg/m ³
Peak concentration (TWA 15 min)	9.4 mg/m ³
Year average concentration	$4.0 \times 10^{-1} \text{ mg/m}^3$
External event dose	5.0×10^{-2} mg/kg bw
Internal event dose	5.0×10^{-2} mg/kg bw
Internal year average dose	2.0×10^{-1} mg/kg bw/day

Further information and considerations on scenario 1

Personal Protective Equipment (PPE) incorporating gloves and face protection are recommended during the spraying process and will reduce exposure via the dermal route. In the quantitative RA, no dermal exposure is considered as the product is left to air-dry. RPE has not been considered here. Good ventilation is required to minimize waiting periods. A ventilation rate of 15/h is suggested for facilities equipped with professional ventilation. Small surface disinfection calculations were made for a spraying time of 2 minutes on 1 m², for 4 applications per day (CAR propan-2-ol).

Calculation of exposure for the mixing and loading and post-application phase was considered not required for a RTU trigger spray.

For exposure via inhalation, the ConsExpoWeb – exposure to spray – instantaneous release scenario was used. Refinements for this exposure estimate can be applied at product authorisation. In any case, exposure to vapour should be reduced by ventilation and other appropriate risk mitigation measures.

For a graphic representation of the Formic Acid air concentration during RTU spraying, see Appendix II graph II.1.

(Semi-)quantitative assessment for oral, dermal and inhalation routes

Results table exposure to PT4 small surface disinfection by RTU trigger spray						
Exposure scenario	Tier/PP E	Estimated inhalation uptake (mg/kg bw/d)	Estimated dermal uptake (mg/kg bw/d)	Estimated total uptake (mg/kg bw/d)	Local dermal exposure (conc., %)	Local inhalation exposure (mg/m3)
1 applicatio n spraying 5%	1/none/ ventilatio n 15/h	0.2 (ConsExpo vapour)	/	0.2	5	1.2 (vapour)

Qualitative local assessment for dermal route

As formic acid is corrosive at or above a 10% dilution, a qualitative risk characterisation is needed for local dermal exposure. This RC is triggered for those BP classified for local effects. In BP where formic acid is present at concentrations that do not trigger classification of the product according to the CLP criteria, RC for local effects is not required.

Some in-use dilutions (2-10% FA) are classified as skin and eye irritant cat. 2. These classifications trigger a qualitative local assessment for the dermal route. We refer to section 12.4.2 for relevant RMM end PPE and the conclusion on the acceptability of the risk.

8.4.2 Scenario 2: cleaning-in-place

Disinfection solution applied for cleaning-in-place; automatic circulation of the disinfection solution through pipework and tanks.

This scenario involves the following sub-scenarios :

2a. Dosing (semi-automated mixing and loading) by professionals in CIP holding tanks

2b. application of the in use solution: cleaning-in-place process

2c. maintenance and repair; disposal of containers

Description of Scenario 2a

Task, exposure model and parameters:

2a. Dosing (mixing and loading) by professionals in CIP holding tanks

Semi-automated loading and dilution of containers into CIP holding tanks

Concentration of a.s. in biocidal product: 85%

Density of product: ca. 1200 g/L⁽¹⁾

Frequency: daily

Application duration: 2 min⁽²⁾

Duration of exposure: 10 min

Ventilation rate: 15/h⁽³⁾

Room volume: 25 m^{3 (3)}

Release area: 100 cm² (5)

Amount of a.s. handled:

For 5% dilution: ca. 70 kg, assuming that 1000 L of a 5% dilution is needed for a CIP system (dilute 59 L of the 85% concentrate 17 times).

Exposed worker: professional

Protective equipment: impermeable coveralls, boots, gloves and face protection⁽⁴⁾

Model:

HEEG Opinion 1 – Opinion on the use of available data and models for the assessment of the exposure of operators during the loading of products into vessels or systems in industrial scale -

TNsG Model 7 for liquid semi-automated transfer/pumping (dermal only); indicative values for exposure:

Indicative dermal exposure: 138 mg/min (total without gloves) 1.38 mg/min (under clothes and gloves)

 Parameters
 Value

 Tier 1
 Body, total without gloves
 138 mg/min

 Ventilation rate
 Ventilation rate
 15/h

ConsexpoWeb (v 1.0.3), evaporation, area of release constant

Tier 2	Body, under clothes and gloves	1.38 mg/min
--------	--------------------------------	-------------

⁽¹⁾ Relative density 1.195 @ 20°C

 $^{(2)}$ application duration from TNSG 2002. automatic systems, cleaning in place (CIP) - (manual systems) mixing & loading

⁽³⁾ Ventilation rate and room volume: in recomm. 6 v4, no defaults were proposed for exposure to volatile compounds during M&L for CIP. 15/h, 25 m³: ventilation rate and room volume suggested for 'kitchens and canteens' in the CAR for propan-2-ol.

(4) See applicant's SDS for 85% FA, section 8 Exposure controls/personal protection

⁽⁵⁾ value proposed in scenario 12 of Recomm. 6, v4 (hoof bath disinfection, mixing and loading of volatile compounds) was used

Calculations for Scenario 2a

Model: TNsG Model 7 - liquid semi-automated transfer/pumping

Tier 1:

Indicative value for dermal exposure:	138 mg/min (without gloves)
138 mg/min * 2 min * 0.85 /60 kg bw	= 3.91 mg/kg bw per task
Tier 2:	
Indicative value for dermal exposure:	1.38 mg/min (PPE, under clothes & gloves)
1.38 mg/min * 2 min * 0.85 /60 kg bw	= 0.0391 mg/kg bw per task

Model: ConsexpoWeb, evaporation, area of release constant

Tier 1, exposure to vapour:

For full ConsExpo reports see Appendix II

Tier 1	Ventilation 15/h
Mean event concentration	2.6 mg/m ³
Peak concentration (TWA 15 min)	2.6 mg/m ³
Year average concentration	1.8 x 10 ⁻² mg/m ³
External event dose	9.1 x 10^{-3} mg/kg bw
Internal event dose	9.1 x 10 ⁻³ mg/kg bw

Internal year average dose $9.1 \times 10^{-3} \text{ mg/kg bw/day}$

Tier 2, exposure to vapour: see tier 1

Description of Scenario 2b

Tasks, exposure models and parameters:

2b. application: cleaning-in-place process

Automated and closed process, no operator present during disinfection, followed by a rinsing step with water, also under closed system conditions.

Concentration of a.s. in diluted biocidal product: 5%

Density of product: ca. 1000 g/L⁽¹⁾

Frequency: daily

Duration of exposure: N.A.

Application rate: N.A., disinfectant is recaptured and recirculated

Exposed worker: professional

Protective equipment: N.A., no contact during application

Model: N.A., closed process, no operator present

Therefore no calculations are provided for scenario 2b application.

(1) aqueous solution

Description of Scenario 2c

Tasks, exposure models and parameters:

2c. maintenance and repair; disposal of containers

Maintenance and repair: exposure is estimated to be below exposure for the mixing and loading task. Calculations for scenario 2a can be considered as reasonable worst case for maintenance and repair.

Disposal of emptied containers: no exposure is assumed during this task. Concentration of a.s. in biocidal product: concentrate 85%, dilution 5% Density of product: ca. 1200 g/L (concentrate); 1000 g/L (dilution) Frequency: daily

Exposed worker: professional

Protective equipment: impermeable coveralls, boots, gloves and face protection Model:

Maintenance and repair: see scenario 2a

Disposal of containers: not relevant: no exposure is assumed; no calculations are provided

Calculations for Scenario 2c:

See scenario 2a

Further information and considerations on scenario 2

Exposure is assumed during the mixing and loading phase, and during maintenance and repair.

Personal Protective Equipment (PPE) incorporating impermeable coveralls, boots, gloves and face protection is assumed during Mixing & Loading, and during maintenance and repair when contact with the FA concentrate is expected. This will significantly reduce exposure via the dermal route. This reduction is also reflected in the indicative value for dermal exposure.

A ventilation rate of 15/h is suggested for food & feed facilities equipped with professional ventilation.

In order to take into account the volatility of formic acid, exposure to vapour during mixing and loading was calculated with the ConsExpoWeb – exposure to vapour – evaporation scenario. Refinements for this exposure estimate can be used at product authorisation. In any case, exposure to vapour should be reduced by ventilation and other appropriate risk mitigation measures.

For maintenance and repair, exposure is estimated to be below exposure for the mixing and loading task. Calculations for scenario 2a can be considered as reasonable worst case for maintenance and repair.

No handling of the biocidal product takes place during the actual CIP application. Also, during disposal of emptied containers, no exposure is assumed.

For a graphic representation of the Formic Acid air concentration during CIP mixing and loading, see Appendix II graph II.2.

(Semi-)quantitative assessment for oral, dermal and inhalation routes

Results table	exposure t	o PT4 cleanir	ng-in-place			
Exposure sub- scenario	Tier/PPE	Estimated inhalation uptake (mg/kg bw/d)	Estimated dermal uptake (mg/kg bw/d)	Estimated total uptake (mg/kg bw/d)	Local dermal exposure (conc., %)	Local inhalation exposure (mg/m3)
2a M&L 85% to 5%	1/none/ ventilation 15/h	9.1*10 ⁻³ (ConsExpo vapour)	3.91	3.92	85	2.6 (ConsExpo vapour)
	2/ impermea ble coveralls, boots, gloves and face protection, ventilation 15/h	9.1*10 ⁻³ (ConsExpo vapour)	0.0391	0.0482	85	2.6 (ConsExpo vapour)
2b application CIP	N.A.	-	-		-	-
2c Maintenance and repair, Cleaning & disposal	1/none/ ventilation 15/h	9.1*10 ⁻³ (ConsExpo vapour)	3.91	3.92	85/5	2.6 (ConsExpo vapour)
	2/ impermea ble coveralls, boots, gloves and face protection, ventilation 15/h	9.1*10 ⁻³ (ConsExpo vapour)	0.0391	0.0482	85/5	2.6 (ConsExpo vapour)

Qualitative local assessment for dermal route

As formic acid is corrosive at or above a 10% dilution, a qualitative risk characterisation is needed for local dermal exposure. This RC is triggered for those BP classified for local effects. In BP where formic acid is present at concentrations that do not trigger classification of the product according to the CLP criteria, RC for local effects is not required.

The concentrate (85% FA) for PT4 professional use is classified as corrosive to the skin, cat. 1B. This classification triggers a qualitative local assessment for the dermal route. We refer to section 12.4.2 for relevant RMM end PPE and the conclusion on the acceptability of the risk.

The in-use dilution (5% FA) is classified as skin and eye irritant cat. 2. This classification triggers a qualitative local assessment for the dermal route. We refer to section 12.4.2 for relevant RMM and PPE and the conclusion on the acceptability of the risk.

SECONDARY EXPOSURE

8.4.3 Scenario 3: re-entry of treated area

Secondary dermal and inhalation exposure may occur from a professional re-entering an area where small surface disinfection has taken place.

After disinfection, the disinfected area is allowed to air dry. Exposure via inhalation is possible for the professional bystander; care must be taken to ensure that the facilities are well ventilated. In any case, inhalation of vapours for the professional bystander will be no higher than values calculated for primary exposure, and in conditions of sufficient ventilation, there is no need to calculate a re-entry time. We refer to 8.4.1, scenario 1 estimated inhalation uptake and local inhalation exposure.

For professionals working in areas for food and feed processing where small surface disinfection occurs regularly, dermal contact with formic acid is possible. According to the applicant, a rinsing step is suggested after contact time, and dermal exposure through touching of treated surfaces is unlikely due to the volatility and rapid degradation of the active substance. eCA BE follows the assumption of the applicant. Nevertheless, an exposure assessment may be considered necessary at the BP evaluation stage.

Description of Scenario 3

Scenario and defaults: see section 8.4.1.

Calculations for Scenario 3, inhalation

Model: ConsexpoWeb, evaporation, area of release increases over time

Tier 1, exposure to vapour:

For full ConsExpo reports see Appendix II

Inhalation	5% dilution
Mean event concentration	1.2 mg/m ³
Peak concentration (TWA 15 min)	9.4 mg/m ³
Year average concentration	$4.0 \times 10^{-1} \text{ mg/m}^3$
External event dose	5.0×10^{-2} mg/kg bw

Internal event dose 5.0×10^{-2} mg/kg bw

Internal year average dose

 $2.0 \times 10^{-1} \,\mathrm{mg/kg}$ bw/day

(Semi-)quantitative assessment for oral, dermal and inhalation routes

	Results table exposure for professional bystanders - PT4 small surface disinfection by RTU trigger spray					
Exposure scenario	Tier/PP E	Estimated inhalation uptake (mg/kg bw/d)	Estimated dermal uptake (mg/kg bw/d)	Estimated total uptake (mg/kg bw/d)	Local dermal exposure (conc., %)	Local inhalation exposure (mg/m3)
1 applicatio n spraying 5%	1/none/ ventilatio n 15/h	0.2 (ConsExpo vapour)	-	0.2	-	1.2 (vapour)

8.4.4 Scenario 4: CIP professional bystander, inhalation

Disinfection solution applied for cleaning-in-place; automatic circulation of the disinfection solution through pipework and tanks.

This scenario involves the inhalation of vapours by professional bystanders during mixing and loading for CIP.

The calculations for primary exposure during M&L for CIP are valid for professional bystanders also (inhalation of vapours only). For details and calculations, see section 8.4.2.

Inhalation exposure is described in scenario 2.

Results ta	Results table bystander exposure to PT4 cleaning-in-place					
Exposure subscena rio	Tier/PP E	Estimated inhalation uptake (mg/kg bw/d)	Estimated dermal uptake (mg/kg bw/d)	Estimated total uptake (mg/kg bw/d)	Local dermal exposure (conc., %)	Local inhalation exposure (mg/m3)
2a M&L 85% to 5%	1/none/ ventilatio n 15/h	9.1*10 ⁻³ (ConsExpo vapour)	-	9.1*10 ⁻³	-	2.6 (ConsExpo vapour)

2/ imperme able coveralls, boots, gloves and face protectio n, ventilatio n 15/h	9.1*10 ⁻³ (ConsExpo vapour)	-	9.1*10 ⁻³	-	2.6 (ConsExpo vapour)
--	--	---	----------------------	---	-----------------------------

8.4.5 Summary tables: systemic and local exposure from professional uses

Summary table: PT4 systemic exposure from professional uses				
Tier/PPE	Estimated inhalation uptake	Estimated dermal uptake	Estimated total uptake	
Scenario 1, RTU spray, 5% dil				
1/none/ ventilation 15/h	0.2 (ConsExpo vapour)	/	0.2 mg/kg bw/d	
2/ gloves and face protection, ventilation 15/h	0.2 (ConsExpo vapour)	/	0.2 mg/kg bw/d	
Scenario 2a, CIP semi-automa	ated M&L			
1/none/ ventilation 15/h	9.1 x 10 ⁻³ mg/kg bw/d (ConsExpo vapour)	3.91 mg/kg bw/d	3.92 mg/kg bw/d	
2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	9.1 x 10 ⁻³ mg/kg bw/d (ConsExpo vapour)	0.0391 mg/kg bw/d	0.0482 mg/kg bw/d	
Scenario 2c, CIP maintenance	and repair			
1/none/ ventilation 15/h	9.1 x 10 ⁻³ mg/kg bw/d (ConsExpo vapour)	3.91 mg/kg bw/d	3.92 mg/kg bw/d	
2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	9.1 x 10 ⁻³ mg/kg bw/d (ConsExpo vapour)	0.0391 mg/kg bw/d	0.0482 mg/kg bw/d	
Scenario 3, re-entry of treated area, RTU spray, 5% dil				
1/ 15/h ventilation rate 0.2 mg/kg bw/d (ConsExpo vapour) 0.2 mg/kg bw/d 0.2 mg/kg bw/d		0.2 mg/kg bw/d		
Scenario 4, professional bysta	nder exposure to CIP	•	·	

1/none/ ventilation 15/h	9.1 x 10 ⁻³ mg/kg bw/d (ConsExpo vapour)	-	9.1 x 10 ⁻³ mg/kg bw/d
2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	9.1 x 10 ⁻³ mg/kg bw/d (ConsExpo vapour)	-	9.1 x 10 ⁻³ mg/kg bw/d

Summary table: PT4 local exposure from professional uses			
Tier/PPE	Local inhalation exposure	Local dermal exposure	
Scenario 1, RTU spray, 5% dil			
1/none/ ventilation 15/h	1.2 mg/m ³ (ConsExpo vapour)	5% (application)	
2/ gloves and face protection, ventilation 15/h	1.2 mg/m ³ (ConsExpo vapour)	5% (application)	
Scenario 2a, CIP semi-automated M	1&L		
1/none/ ventilation 15/h	2.6 mg/m ³ (ConsExpo vapour)	85% (M&L)	
2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	2.6 mg/m ³ (ConsExpo vapour)	85% (M&L)	
Scenario 2c, CIP maintenance and r	epair		
1/none/ ventilation 15/h	2.6 mg/m ³ (ConsExpo vapour)	85% (M&L) 5% (in-use dilution)	
2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	2.6 mg/m ³ (ConsExpo vapour)	85% (M&L) 5% (in-use dilution)	
Scenario 3, re-entry of treated area	, RTU spray, 5% dil		
1/ 15/h ventilation rate	1.2 mg/m ³ (ConsExpo vapour)	-	
Scenario 4, professional bystander	exposure to CIP		
1/none/ ventilation 15/h	2.6 mg/m ³ (ConsExpo vapour)	-	
2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	2.6 mg/m ³ (ConsExpo vapour)	-	

8.4.6 Combined scenarios

A possible scenario combination for CIP applications is mixing/loading and maintenance/repair performed by the same person. We will calculate combined exposure for scenarios 2a and 2c.

For local exposure, no addition of exposure levels is performed; only the highest exposure level in air is considered relevant.

Summary	Summary table: combined systemic exposure from professional uses				
Scenarios combined	Estimated inhalation uptake	Estimated dermal uptake	Estimated total uptake		
Scenarios 2a+2c, tier 1	1.8*10 ⁻² mg/kg bw (ConsExpo vapour)	7.82 mg/kg bw	7.84 mg/kg bw		
Scenarios 2a+2c, tier 2	1.8*10 ⁻² mg/kg bw (ConsExpo vapour)	0.0782 mg/kg bw	0.0962 mg/kg bw		

8.5 NON-PROFESSIONAL EXPOSURE

There is no non-professional use of the biocidal product.

8.6 SECONDARY EXPOSURE OF THE GENERAL PUBLIC EXCLUDING DIETARY EXPOSURE

The representative products in this CAR are intended for professional use and in professional premises only where secondary exposure of the general public does not occur. For the general public, at product authorisation stage, secondary exposure via the dermal, oral and inhalation route will have to be considered, or alternatively, the intended uses may have to be restricted by appropriate RMM.

8.7 DIETARY EXPOSURE

At the time of writing, no validated guidance is available for estimating dietary risk from transfer of biocidal active substances into foods – professional uses.

Dietary exposure to formic acid is highly unlikely for the following reasons:

Biocidal products containing Formic acid are not intended for direct or indirect contact with food or feed. Moreover, residue transfer from surfaces to food are not expected

due to the high vapour pressure of the active substance. If such transfer should occur, it would most likely not result in dietary intake, considering the volatility of FA.

However, at product authorisation, the need for an assessment of dietary exposure should be reviewed in relation to the inclusion of a rinsing step after application. It should be ascertained whether the argumentation above applies to the biocidal product in question. Factors to take into account are, i.a., composition, intended use and contact time (efficacy).

8.7.1 Information of non-biocidal use of the active substance

Sun	Summary table of other (non-biocidal) uses				
	Sector of use ¹	Intended use	Reference value(s) ²		
1.	industry	Industrial manufacture of polymers, resins			
2.	industry/professional workers	Polymer processing			
3.	industry/professional workers	(Industrial) use as processing aid			
4.	industry/professional workers	Industrial use in laboratories			
5.	industry	Use as an intermediate			
6.	industry	Uses in coatings			
7.	Industry/professional workers	Use in cleaning agents			
8.	Animal nutrition	Feed hygiene agent	Maximum proposed dose ³ : pigs: 12000 mg/kg All other animal species 10000 mg formic acid equivalents/kg complete feed		

e.g. plant protection products, veterinary use, food or feed additives

² e.g. MRLs. Use footnotes for references.

³ (EFSA, 2009, FA_BPR_Ann_II_8_16_01; EFSA, 2014; FA_BPR_Ann_II_8_16_02; EFSA, 2015, FA_BPR_Ann_II_8_16_03)

8.7.2 Estimating Livestock Exposure to Active Substances used in Biocidal Products

Not relevant for the PT4 uses discussed in this draft CAR.

8.7.3 Estimating transfer of biocidal active substances into foods as a result of professional and/or industrial application(s)

Note that at the time of writing, ARTFood's 'Guidance on Estimating Transfer of Biocidal Active Substances into Foods – Professional Uses' was still in draft form.

Formic acid occurs naturally in animals and most plants, and is an inherent ingredient in human food. It is an intermediate in normal metabolism. Its toxicokinetic properties and its metabolism have been investigated in rat, dog, monkey, pig and humans. Formic acid and formate salts are rapidly absorbed, converted and eliminated. There is no indication for accumulation of formate. The possibility for crossing of barriers such as exposure via breastmilk is low. Due to its rapid turnover and unlikely accumulation, an in-depth estimation of exposure of humans to formic acid residues through diet as a consequence of surface disinfection is not considered here.

For formic acid currently default MRLs of 0.01 mg/kg apply according to Art.18(1)(b) Reg 396/2005.

Dietary exposure to formic acid is highly unlikely for the following reasons:

Biocidal products containing Formic acid are not intended for direct or indirect contact with food or feed. Moreover, residue transfer from surfaces to food are not expected due to the high vapour pressure of the active substance. If such transfer should occur, it would most likely not result in dietary intake, considering the volatility of FA.

However, it is proposed that at product authorisation, the need for an assessment of dietary exposure be reviewed in relation to the inclusion of a rinsing step after application. It should be ascertained whether the argumentation above applies to the biocidal product in question. Factors to take into account are, i.a., composition, intended use and contact time (efficacy).

8.7.4 Estimating transfer of biocidal active substances into foods as a result of non-professional use

Not applicable; the active substance is not intended for non-professional use.

8.8 EXPOSURE ASSOCIATED WITH PRODUCTION, FORMULATION AND DISPOSAL OF THE BIOCIDAL PRODUCT

Please refer to section 8.3 on industrial exposure; disposal of the biocidal product is mentioned for each scenario in section 8.4 on professional exposure.

9 ENVIRONMENTAL EXPOSURE ASSESSMENT

The representative product Protectol® FM 85 is intended to be used in a wide variety of products under PT2, 3, 4, 5 and 6. As a PT4 biocide, the product is intended to be used as a surface disinfectant for surfaces that can come into contact with food/feed, a disinfectant of pipelines, mixing and storage tanks and a disinfectant of equipment used in the preparation storage and consumption of food/feed, by professional users.

Protectol® FM 85 should not be used without first formulating into either a RTU product or a to-be-diluted concentrate. These products can then be used as disinfectants in food and feed areas.

For the purpose of this active substance evaluation, the applicant described the following specific uses:

Field of use envisaged	Users	Likely concentration at which a.s. will be used
Clean-in-place	Professional	Formulated concentrate; dilute to 0.5-5 % a.s. (= 0.59% to 5.9% of Protectol® FM 85); recirculated
Small surface disinfectant, RTU trigger spray	Professional	Formulated concentrate; dilute to 0.5-5 % a.s. (= 0.59% to 5.9% of Protectol \circledast FM 85) The application rate of the diluted product for the disinfection of small surfaces is typically 18 mL per square metre.

A use concentration of 5.88% Protectol® FM 85 (corresponds to 5% a.s.) is proven to be efficacious and will be used in the exposure calculations. Please refer to §**Erreur ! Source du renvoi introuvable.** for further efficacy details.

The evaluation submitted by the applicant was based on an old scenario included in USES (Tiles and surfaces, 2.4), which is currently no longer relevant, since a number of PT4 emission scenarios have become available, which are more suited to evaluate this particular use.

Based on the above described uses and the currently available emission scenario's for PT4, BE eCA used the PT4 scenario for the assessment of entire plants as described in the ESD for the FDM-industry to cover the proposed use as a CIP-cleaning. Additionally, also to cover the professional RTU small surface disinfection, the scenario for disinfection in large scale catering kitchens, canteens, slaughterhouses and butcheries will be considered, taking into account the option for small scale applications as mentioned in the TAB v2 ENV 67.

General information	
Assessed PT	PT 4
Assessed scenarios	<u>Scenario 1:</u> FDM-industry, assessment of entire plants (IHO, 2006) <u>Scenario 2:</u> Disinfection in large scale catering kitchens, canteens, slaughterhouses and butcheries, small scale applications
ESD(s) used	Scenario 1 & 2: ESD for PT4: Emission scenarios for disinfectants used in food and feed areas (JRC, 2011)
Approach	<u>Scenario 1:</u> Tonnage based approach <u>Scenario 2:</u> Average consumption
Distribution in the environment	Calculated based on the ECHA Guidance on the Biocidal Products Regulation, Volume IV Environment, Part B Risk Assessment (active substances) (version 1 April 2015)
Groundwater simulation	No
Confidential Annexes	YES: The calculation of the average amount of a.s. used in a local plant per year is estimated based on the annual tonnage declared. Calculation parameters, full calculation and the results are found in the Confidential Annex to this CAR.
Lifce cycle steps assessed	Scenario 1 & 2: Production: No Formulation No Use: Yes Service life: No
Remarks	/

Biocidal product specific data

The applicant provided two addenda to the biocidal active substance registration dossier aiming at assessing the fate of formic acid in soil and manure in order to refine the exposure calculations. The addenda ('Formic acid: Fate and degradability – Soil and Manure' (August 20,

PT4

2019) and 'Formic acid: Degradability in Manure' (September 07, 2020)) give an overview of the data found in the public literature on degradability and fate of formic acid in soil and manure.

In addition to the mentioned addenda, also Doc IIIA robust study summaries of open literature data were submitted for the degradability and fate of formic acid in soil and manure. Reference is made to sections 4.1.1.3.5 and 4.1.1.3.6 of Part A of the present CAR.

The addenda and the evaluation by the eCA are included in Doc IIIB 10.2.

Following ENV WG-I-2022, a DT₅₀ value for soil of 1 day (12 °C; please refer to section 4.1.1.3.6) and a DT₅₀ value of \leq 10.5 days (20 °C; please refer to section 4.1.1.3.5) are agreed. At the time of writing (April 2022), no agreed environmental relevant temperature exists for the manure. For this specific case, from a precautionary principle, it was agreed at ENV WG-I-2022 to reconvert the DT₅₀ value for manure to a temperature of 12 °C as a first tier.

9.1 EMISSION ESTIMATION

9.1.1 Scenario 1: FDM-industry, assessment of entire plants (IHO, 2006)

Protectol® FM 85 is intended to be used in a large variety of ways, amongst which is as a CIP-disinfectant in the Food, Drink and Milk industry (FDM).

The applicant did not provide any specific use information for use in a single plant. The only information at hand is the likely tonnage to be placed on the market per year for use as a PT4 biocide. With this and recommendations from the *Technical Agreements for Biocides* (TAB v2, ENV 65) emission to wastewater is estimated following the IHO-scenario provided in the ESD.

Since tonnage information is confidential, please see the Confidential Annex to this CAR for the full calculations.

Resulting local emission to relevant environmental compartments				
Compartment	Concentration (C _{compartment}) [mg/L]	Remarks		
Freshwater (C _{effluent})	6.12x10 ⁻²	Following an on-site STP (Ceffluent)		
STP (Cinfluent)	0.55	released to an off-site STP (Cinfluent)		

PT4

9.1.2 Scenario 2: Disinfection in large scale catering kitchens, canteens, slaughterhouses and butcheries

To further investigate the use of Protectol® FM 85 as a hard surface disinfectant for professional use, the PT4 scenario for small scale disinfection in catering kitchens, canteens, slaughterhouses and butcheries by spaying/wiping as is described in the ESD Table 10 is evaluated, taking into account the TAB v2 recommendation ENV 67 for RTU small scale applications.

The use concentration of Protectol® FM 85 can go from 0.59% to 5.9% (corresponding to 0.5% to 5% a.s.), with an application ratio of 18 mL per m². The efficacy data submitted by the applicant was however only sufficient to conclude on a sufficiently effective product at a use concentration of 5% a.s.

To calculate the final application rate, also the relative density of the ready to use dilution (5.9% of product diluted in water) is taken into account, which is considered to be equal to the relative density of water (1.00 g/cm³).

 $Elocal_{water} = \frac{Qa.i_{appl} \times AREA_{surface} \times Nappl \times (1 - F_{dis}) \times (1 - F_{elim}) \times F_{water}}{1000}$

Input parameters for calculating the local emission					
Input	Value	Unit	Remarks		
Scenario 2: Small surface disinfection in large scale catering kitchens, canteens, slaughterhouses and butcheries					
5% a.s. in use concentration, applying 18 mL/m ² \rightarrow Qa	$1.i_{appl} = (50 \text{ g/L x})$	$0.018 \text{ L/m}^2) = 0.9$	g/m²		
Application rate of active substance (Qa.i.appl):	0.9	g/cm²	Setlist/Output		
Surface area to be disinfected (AREA _{surface}): RTU slaughterhouses RTU large scale kitchens	10 50	m²	Default (TAB v2 ENV 67) (TAB v2 ENV 67)		
Number of applications per day (Nappl)	1	d-1	Default		
Fraction of substance disintegrated during or after application (before release to the sewer system) (F_{dis})	0	[-]	Default		
Fraction of substance eliminated due to on-site pretreatment of waste water (F_{elim})	0	[-]	Default		

Belgium	Formic Acid (CAS nº 64-18-6)	PT4

Fraction released to wastewater (F _{water})	1	[-]	Default

Resulting local emission to relevant environmental compartments				
CompartmentLocal emission (Elocal_compartment) [kg/d]Remarks				
STP				
RTU slaughterhouses	9.00E-03			
RTU large scale kitchens	4.50E-02			
Combined	5.40E-02			

9.2 FATE AND DISTRIBUTION IN EXPOSED ENVIRONMENTAL COMPARTMENTS

Identification o	Identification of relevant receiving compartments based on the exposure pathway								
	Fresh- water	Sediment	503-W/3TOP	Seawater sediment	STP	Air	Soil	Ground- water	Biota
Scenario 1	++	(-)	(+)	(-)	++	(-)	+	+	(-)
Scenario 2	+	(-)	(+)	(-)	++	(-)	+	+	(-)

++ Compartment directly exposed

- Compartment not exposed

+ Compartment indirectly exposed

() Compartment potentially exposed [but unlikely to be a significant concern due to hazard data and / or scale of exposure]

Input parameters (only set values) for calculating the fate and distribution in the environment				
Input	Value	Unit	Remarks	
Molecular weight	46.03	g/mol		
Melting point	8	°C		
Boiling point	100.23	°C		
Vapour pressure (at 12 °C)	2400	Ра		
Water solubility (at 12 °C)	1.09x10 ⁶	mg/l		
Log10 Octanol/water partition coefficient	-2.10		(pH 7)	
Organic carbon/water partition coefficient (Koc)	30	l/kg	(pH 7)	
Henry's Law Constant (at 12 °C)	0.101	Pa/m3/mol		
Acid dissociation constant	3.7		Predominant species at a pH of 7 is formate, which is reflected in the pH dependent Koc.	

Biodegradability	Ready biodegradable		
DT50 for degradation in soil (12 °C)	1	day	

Calculated fate and distribution in the STP				
Compartment	Percentage [%]	Domentic		
	All scenarios	Remarks		
Air	0.04222	Calculated with SimpleTreat 4.0 ⁹		
Water	7.991			
Sludge	0.2796			
Degraded in STP	91.69			

9.3 CALCULATED PEC VALUES

	PEC _{STP}	PECwater	PEC _{sed} ¹	PEC _{soil,twa} ²	PEC _{Gw} ³
	[mg/L]	[mg/L]	[mg/kg _{wwt}]	[mg/kg _{dwt}]	[µg/L]
Scenario 1			see PEC _{water} ¹		
on-site	N/A	6.12x10 ⁻²		N/A	N/A
off-site	4.40x10 ⁻²	4.39x10 ⁻³		3.10x10 ⁻⁴	7.04x10 ⁻²
Scenario 2			see PEC _{water} ¹		
RTU small scale applications (combined)	2.16x10 ⁻³	2.16x10 ⁻⁴		1.52x10 ⁻⁵	3.46x10 ⁻³

⁹ In accordance with TAB entry ENV 9, the concentration of suspended solids (Css) in the effluent is changed manually to 30 mg/L (0.03 kg/m³).

PT4

BPC-43-2022-07B

2 initial concentration after sludge application considering the averaging time of 30 days for the terrestrial ecosystem 3 TIER 1: porewater concentration

9.4 PRIMARY AND SECONDARY POISONING

9.4.1 Primary poisoning

Not relevant.

9.4.2 Secondary poisoning

Formic acid is not expected to bioaccumulate based on the experimentally derived log Kow of -2.1 (23 °C, pH7) and the calculated BCF (see §4.1.3 above). Therefore, secondary poisoning of formic acid in either the aquatic or terrestrial food chain is considered not relevant.

10 ASSESSMENT OF EFFECTS ON HUMAN HEALTH FOR THE PRODUCT

10.1 PRODUCT(S)

The toxicological properties of the product may be derived from the properties of the active substance and other components of the product. Information on the toxicity of the active substance is presented in Part A, Section 3. There are no compounds of concern in the formulated product that adversely affect the conclusions of the risk assessment for the active substance in the product, therefore limited further assessment is needed.

10.2 DERMAL ABSORPTION

Since the biocidal product **Protectol® FM 85**, containing 85% formic acid with no other ingredients than water, and formic acid itself are classified as corrosive it is expected that the irritation potential would be sufficient to prevent use of the solution without taking precautions to prevent dermal exposure and so minimising the potential for absorption.

Furthermore, the corrosive nature of formic acid would also corrode the skin sample used in the test, thereby producing meaningless absorption results.

Severe metabolic acidosis resulting from dermal contact with formic acid from biocidal products as described in several case reports (see section 3.3.1 and 3.14), demonstrated rapid dermal absorption through the acid-burned skin.

Therefore, a dermal absorption study using the biocidal product **Protectol® FM 85** is scientifically unjustified.

Value(s) used in the F	Value(s) used in the Risk Assessment – Dermal absorption				
Value(s)*	In a first tier of risk assessment, a worst-case value for dermal absorption of 100% is used for external dermal exposure.				
Justification for the selected value(s)	Severe metabolic acidosis resulting from dermal contact with formic acid from biocidal products as described in several case reports, demonstrated rapid dermal absorption through the acid-burned skin.				
	Due to the corrosive properties the dermal absorption of formic acid was not tested. Dermal absorption is known to occur from incidental exposure to large quantities of concentrated formic acid which led to systemic toxicity (section 3.3.1 and 3.14).				

Data waiving	
Information requirement	Dermal absorption of the biocidal product Protectol® FM 85 containing 85% formic acid has not been investigated.
Justification	Due to the corrosive properties of the biocidal product and formic acid, no dermal absorption study is requested.

10.3 ACUTE TOXICITY

The acute toxic action profile of formic acid is predominantly determined by its inherent irritating/corrosive properties. The toxicity values after oral uptake and inhalation in rats suggest formic acid to be acutely harmful. The clinical signs give no evidence of specific systemic adverse effects.

The biocidal product, **Protectol® FM 85**, contains the active substance to 85% **Control**. The marketed products may be further diluted by downstream users to give less concentrated solutions, which are further diluted by the end users with water during the application or to give the ready-for-use solutions. The intended concentrations of the market products and the concentrations during the use as PT4 products are summarized as follows:

Product Type	Formic acid concentration [%]		Remarks
	Market product	Ready- for-use solution	
4	85%	0.5-5%	Professional, Small surface disinfectant, RTU trigger spray
4	85%	0.5-5%	Professional, Clean-in-place

It is evident from the above that 85% formic acid concentrates must be considered as the worst case.

Acute effects are likely to be caused by formic acid as the major component of the product. The acute oral and inhalation toxicity of formic acid has been characterised as described in section 3.2 and is applicable to that of the biocidal product.

10.3.1 Overall conclusion on acute toxicity

Value used in the Risk	Value used in the Risk Assessment – Acute toxicity						
Value(s)	LD ₅₀ oral 730 mg/kg bw ¹⁰ LC ₅₀ inhalation 7.4 mg/l						
Justification for the selected value	Appropriate studies are available for determining the LD_{50} oral and LC_{50} inhalation of formic acid. See sections 3.2.1 and 3.2.3.						
Classification for the product according to CLP and DSD							

Data waiving					
Information requirement	Acute toxicity of <i>Protectol[®] FM 85</i>				
Justification	Since both formic acid and the biocidal product are classified as corrosive, additional acute toxicity testing with the biocidal product is scientifically unjustified and is not in the interests of animal welfare.				

10.4 CORROSION AND IRRITATION

No skin and eye irritation study reports on formic acid and the biocidal product, **Protectol® FM 85**, are available.

Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive (C, R 35) in the EU (12th ATP to Directive 67/548/EEC).

According to Directive EU CLP 1272/2008, Formic Acid is to be classified as skin corrosive 1A and with the following concentration limits:

¹⁰ Final LD₅₀ will be set by RAC; it is the LD₅₀ value from the adopted RAC opinion that will need to be used in biocidal product authorisation.

Skin Corr. 1B; H314: 10% ≤ C < 90%

Skin Corr. 1A; H314: C ≥ 90%

Skin Irrit. 2; H315: $2\% \le C < 10\%$

Eye Irrit. 2; H319: $2\% \le C < 10\%$

In addition, the corrosive potential of formic acid and formulations containing formic acid has been reported on several occasions after accidental dermal exposure in humans and documented in case reports. For a more comprehensive discussion see section 3.3.1.

We propose additional labelling with EUH071, 'corrosive to the respiratory tract'. See section 3.3.3 for further details. This classification is transferred to **Protectol® FM 85**.

10.4.1 Skin corrosion and irritation

No data on the biocidal product are available.

10.4.2 Serious eye damage and eye irritation

No data on the biocidal product are available.

10.4.3 Respiratory tract irritation

No data on the biocidal product are available.

10.4.4 Overall conclusion on corrosion and irritation

Conclusion used in the Risk Assessment – Corrosion and irritation

Value(s) or Conclusion(s)Formic acid and Protectol® FM 85 are corrosive to skinFormic acid and Protectol® FM 85 are corrosive to the respiratory tract					
Justification for the selected value/ conclusion	See justification below				
Classification of the product according to CLP and DSD	Skin Corr. 1B; H314 EUH071				

Data waiving							
Information requirement	No skin and eye irrit available.	No skin and eye irritation study reports on formic acid and the biocidal product, Protectol® FM 85 , are available.					
Justification		Due to the inherent properties of formic acid (strong acid), the substance has been classified as corrosive (C 35) in the EU (12 th ATP to Directive 67/548/EEC) with the following concentration limits:					
	C ≥ 90 %	C, R35	corresponds to	Skin Corr. 1A; H314			
	10 % ≤ C < 90 %	C, R34		Skin Corr. 1B; H314			
	2 % ≤ C < 10 % Xi, R36/38 Skin Irrit. 2; H315: 2% ≤ C < 10%						
	Eye Irrit. 2; H319: 2% ≤ C < 10%						
	EUH071: the corros	EUH071: the corrosive properties determine the toxicity of formic acid (CLP Regulation Annex II, point 1.2.6).					

10.5 SENSITISATION

10.5.1 Skin sensitisation

There was no evidence of a sensitising potential for formic acid (technical, purity 85.3%) in guinea pigs using the method of Buehler according the OECD test guideline 406 (see section 3.3.3). In addition, there is no data available (human data including market surveillance data, animal data, open literature) which may be indicative of the potential of formic acid to cause skin sensitisation and sensitisation by inhalation in humans.

-		
80	aum	
Del	lgium	
	9.0	

PT4

BPC-43-2022-07B

The biocidal product, **Protectol® FM 85**, is comprised of 85% formic acid Skin sensitisation of the biocidal product would therefore likely to be caused by formic acid.

The biocidal product is not expected to be a sensitiser. Therefore, the request for a skin sensitisation study with the product would be scientifically unjustified and not in the interests of animal welfare.

Conclusion used in Risk Assessment – Skin sensitisation						
Value/conclusion	ormic acid and Protectol[®] FM 85 do not fulfill the criteria of the CLP regulation to be classified as a skin sensitiser					
Justification for the value/conclusion	in sensitization (Buehler test) by formic acid (85.3%) has been assessed in an OECD 406 study (Buehler test). e results do not trigger a classification as skin sensitizer.					
Classification of the product according to CLP and DSD	none					

10.5.2 Respiratory sensitisation

No data on the biocidal product are available.

Conclusion used in the Risk Assessment – Respiratory sensitisation							
Value/conclusion	here is no indication that formic acid or Protectol[®] FM 85 would be respiratory sensitizers.						
Justification for the value/conclusion	No data are available (human data e.g. market surveillance data, animal data, open literature) which may be indicative of the potential of formic acid to cause sensitisation by inhalation in humans. No respiratory sensitisation was seen with formic acid in two subchronic rat and mouse inhalation studies (see section 3.6.3, Thompson 1992). Hence, there is no indication that formic acid would be a respiratory sensitizer.						
Classification of the product according to CLP and DSD	none						

10.5.3 Overall conclusion on sensitisation

Conclusion used in the	Conclusion used in the Risk Assessment – Sensitisation						
Conclusion(s)	Formic acid and Protectol[®] FM 85 are not skin sensitizers. There is no indication that formic acid or Protectol[®] FM 85 would be respiratory sensitizers.						
Justification for the conclusion(s)	Classification as a sensitizer is not triggered by appropriate tests. Studies in guinea pigs (method of Buehler) showed that there is no evidence that formic acid has a potential to induce skin sensitisation. In addition, there are no data available (human data including market surveillance, animal studies, open literature) that may be indicative of the potential of formic acid to cause skin sensitisation and sensitisation by inhalation in humans.						
Classification of the product according to CLP and DSD	none						

Data waiving					
Information requirement	Skin sensitisation study on <i>Protectol® FM 85</i>				
Justification	The biocidal product is not expected to be a sensitiser. Therefore, the request for a skin sensitisation study with the product would be scientifically unjustified and not in the interests of animal welfare.				

10.6 OTHER

As far as known, there are no further inherent properties of the active substance and non-active substances (water) the classification of which has to be adopted to the biocidal product according to Regulation 1272/2008/EC.

11 ENVIRONMENTAL EFFECTS ASSESSMENT FOR THE PRODUCT

The ecotoxicological properties of the product may be derived from the properties of the active substance and other components of the product. Information on the ecotoxicity of the active substance is presented in Part A, Section 4.2. There are no compounds of concern in the formulated products that adversely affect the conclusions of the risk assessment for the active substance in the product , therefore no further assessment is needed.

11.1 ATMOSPHERE

No studies submitted.

11.2 STP

No studies submitted.

11.3 AQUATIC COMPARTMENT

No studies submitted.

11.4 TERRESTRIAL COMPARTMENT

No studies submitted.

11.5 PRIMARY AND SECONDARY POISONING

No studies submitted.

<u>PART C</u> : RISK CHARACTERISATION OF THE BIOCIDAL PRODUCT(S)

12 RISK CHARACTERISATION FOR HUMAN HEALTH

12.1 CRITICAL ENDPOINTS

The primary endpoint for formic acid is its corrosiveness. Formic acid is severely irritating and corrosive to the eyes, skin, and mucous membranes (gastrointestinal and respiratory tract) and may cause permanent damage. Due to the corrosivity of formic acid, local effects must be expected at all dose levels. Corrosive intoxication might mediate systemic injury as metabolic acidosis, intravascular hemolysis, and renal failure. Systemic adverse effects such as decrease in body weight gain (rat, mice), might be due to the inherent irritating potential. Formic acid is associated with optical nerve and photoreceptor toxicity which is observed in humans and monkeys following methanol intoxication.

Systemic toxicity of formic acid can be established by its salts, sodium formate and potassium diformate, and a closely related substance methanol, as these chemicals have a common breakdown product *in vivo*. Please see section 3.1 on Toxicokinetics for a justification of the read-across applied.

Reference values will be derived for formate and expressed as mg formate/kg bw/d. A conversion is not needed as the difference between formic acid and formate is limited to 1 H+ (MW of formate is 1 less than formic acid).

Spec ies	Route	Study duration	Test substa nce	Dose setting (mg/k g bw/d)	Critical effect	LO(A)EL and NO(A)EL (mg/kg bw/d)	References
Rat	Oral	Acute	Formic acid	501, 631, 794, 1000 gavage	Clinical signs and organ lesions indicated corrosive properties of the test substance - Local effect on of the	LD50 = 730 mg/kg bw ¹¹	BPD ID A6.1.1_01 FA_BPR_Ann_II 8_7_1_01 1985

12.1.1 Systemic effects

¹¹ Final LD₅₀ will be set by RAC; it is the LD₅₀ value from the adopted RAC opinion that will need to be used in biocidal product authorisation.

					gastro- intestinal tract		
N.R.	Derma I	Acute	Formic acid	-	-	No data, corrosivity	
Rat	Inhala tion	Acute	Formic acid	2.82, 6.60, 8.08, 10.6, 14.7 mg/L vapour	Clinical signs indicated corrosive properties of the test substance, evidenced by the occurrence of corneal opacity and corrosion of the dorsal nose - Local effect on the respiratory tract	LC50 = 7.4 mg/L	BPD ID A6.1.3_01 FA_BPR_Ann II _8_7_2_01 1980
Rat	Oral	Teratogen icity study		0, 40, 160, 640 mg formate /kg bw/d	Systemic: no maternal systemic toxicity reached No evidence of teratogene tic or embryotoxi c effects	as formate: LOAELsyst emic > = 640 NOAELsyst emic = 640 (highest concentrat ion tested)	BPD ID A6.8.1_01 FA_BPR_Ann_II_8_1 0_3_01 2005
Rat	Oral	Subchroni c 90 day feeding study	Potassi um diforma te	0, 420, 840, 2100 mg formate /kg bw/d	Systemic: reduced bw gain Local: gastric irritation, hyperplasti c changes in the stomach	as formate: LOAELsyst emic = 2100 (highest concentrat ion tested) LOAELlocal = 420 NOAELloca I < 420	BPD ID A6.4.1_01 FA_BPR_Ann_II_8_9 _2_01 1998

Rat Oral Chronic Potassi 0,35, Systemic: BPD ID A6.5 01 as 2-year um 280, reduced formate: FA BPR Ann II 8 9 feeding diforma 1400 bw gain LOAELsyst 3 01 study te mq emic =2002a formate 1400 Local: /kg aastric (highest bw/d irritation, concentrat hyperplasti ion tested) c changes in the LOAELlocal stomach = 280 and NOAELloca gastrointes 1 = 35tinal tract Rat Oral 2-Sodium 0,68, BPD ID A6.8.2_01 Systemic: as format 203, decreased 2008b generatio formate: n study е 677 mg food FA BPR Ann II 8 1 LOAELsvst formate consumpti emic = 0 2 01 /kq on, 670 bw/d decreased (highest bw gain in concentrat F1 parental ion tested) males NOAELsyst emic = No findings 200 on reproductio n and developme nt Rat Subchroni Formic 0, 15, Inhala Systemic: LOAELsyst BPD ID A6.4.3_01 tion c 90-day acid 30, 61, emic > no FA BPR Ann II 8 9 inhalation 122, evidence of 244 2 03 244 study systemic mg/m³ Thompson, 1992 mg/m3 toxicity NOAELsyst emic = 244 Vapour, Local: mg/m³ whole nasal body irritation, (highest histopathol dose ogical tested) changes in nasal LOAELlocal region = 61 mg/m³ NOAELloca I = 30mg/m³ Mous Oral Carcinoge Potassi 0,35, Systemic: as BPD ID A6.7_02. nicity um 280, reduced formate: е FA_BPR_Ann_II_8_1 diforma 1400 study: bw gain 1_2_01 80-week te mg 2002b formate

		feeding study		/kg bw/d	Local: gastric irritation, hyperplasti c changes in the forestomac h	LOAELsyst emicl = 1400 (highest concentrat ion tested) NOAELsyst emicl = 280 LOAELlocal = 1400 (highest concentrat ion tested) NOAELloca I = 280	
Mous e	Inhala tion	Subchroni c 90-day inhalation study	Formic acid	0, 15, 30, 61, 122, 244 mg/m3	Systemic: decreased bw gain Local: nasal irritation, histopathol ogical changes in nasal region	LOAELsyst emic = 244 mg/m ³ (highest dose tested) NOAELsyst emic = 122 mg/m ³ LOAELlocal = 122 mg/m ³ NOAELloca I = 61 mg/m ³	BPD ID A6.4.3_01 FA_BPR_Ann_II_8_9 _2_04 Thompson, 1992
Rabbi t	Oral	Teratogen icity study	Sodium format e	0, 68, 203, 677 mg formate /kg bw/d	Systemic: no maternal systemic toxicity reached No evidence of terato- genetic or embryotoxi c effects	as formate: as formate: LOAELsyst emic > = 670 NOAELsyst emic = 670 (highest concentrat ion tested)	BPD ID A6.8.1_02 2008a FA_BPR_AnnII_8_10 _1_01
Pig	Oral	Subchroni c 140-day	Potassi um	0, 149, 359, 760 mg	No signs of maternal systemic	as formate:	BPD ID A6.4.1_02

-		1	1	1			
		feed study	diforma te	formate /(kg bw/d	toxicity or toxicity to reproductio n or developme nt at any dose level. Local: gastric effects - forestomac h gastritis and erosion/ulc	LOAELsyst emic, > 760 NOAELsyst emic = 760 (highest concentrat ion tested) LOAELlocal = 149 NOAELloca I < 149	FA_BPR_Ann_II_8_9 _2_02 2004
Pig	Oral	Subchroni c > 300- day feed study	Potassi um diforma te	0, 98, 301 mg formate /kg bw/d	er No signs of maternal systemic toxicity or toxicity to reproductio n or developme nt at any dose level.	as formate: LOAELsyst emic, local > 300 NOAELsyst emic, local = 300 (highest concentrat ion tested)	BPD ID A6.5_02 FA_BPR_Ann_II_8_9 _4_0_JNS 2003

12.1.2 Local effects

Route	Effect	Study	Classification	Hazard category ¹
Dermal	corrosive	n.a.	Skin corr 1A	Very high
Respiratory	corrosive	(1980) BPD ID A6.1.3_01 FA_BPR_Ann_II_8_7_2_01	EUH071	
		BPD ID A6.4.3_01 FA_BPR_Ann_II_8_9_2_03 Thompson, 1992 (see 12.1.1)		
		BPD ID A6.4.3_01 FA_BPR_Ann_II_8_9_2_04 Thompson, 1992 (see 12.1.1)		
oral	irritating to the gastrointestinal tract (mouth, oesophagus, forestomach)	(1998), BPD ID A6.4.1_01; FA_BPR_Ann_II_8_9_2_01		

(2002a). BPD ID	
A6.5_01;	
FA_BPR_Ann_II_8_9_3_01	
(2002b), BPD ID	
A6.7_02,	
FA_BPR_Ann_II_8_11_2_01	
(2004), BPD ID	
A6.4.1 02;	
FA_BPR_Ann_II_8_9_2_02	
High concentration intake –	
case reports, a.o. Westphal	
et al (2001), BPD ID	
A6.12.2_01,	
FA_BPR_Ann_II_8_12_2_01	

According to the guidance "Risk characterisation for local effects including sensitisation" – reference to be updated when the guidance is integrated into ECHA guidance.

12.1.3 Absorption

Route	Study	Test substance	Concentration of test substance	Applicability (concentration ranges)	Value
Oral	None, corrosive	/	/	/	Rapid, no quantitative data Assumed 100%
Dermal	None, corrosive	/	/	/	Assumed 100%
Inhalation	None, corrosive	/	/	/	Assumed 100%

12.2 REFERENCE VALUES

12.2.1 Uncertainties and assessment factors

AELshort-term							
Uncertainty	AF	Justification					
Interspecies variability	10	Default AF in the absence of substance-specific data					
Intraspecies variability	10	Default AF in the absence of substance-specific data					
Route to route extrapolation	1	No indication for route-specific differences in systemic toxicity					

Time duration extrapolation	1	no additional extrapolation factor for duration is considered for the calculation of the acute AEL from the repeated 90-day oral toxicity study
NOAEL to LOAEL extrapolation	/	
Dose response	/	
Severity of key health effects	/	reduced bw gain at 2100 mg formate/kg bw/d
Overall AF	100	(n.a.)

AELmedium-term						
Uncertainty	AF	Justification				
Interspecies variability	10	Default AF in the absence of substance-specific data				
Intraspecies variability	10	Default AF in the absence of substance-specific data				
Route to route extrapolation	1	No indication for route-specific differences in systemic toxicity				
Time duration extrapolation	1	Study duration subchronic				
NOAEL to LOAEL extrapolation	/					
Dose response	/					
Severity of key health effects	/	reduced bw gain at 2100 mg formate/kg bw/d				
Overall AF	100	(n.a.)				

AELlong-term						
Uncertainty	AF	Justification				
Interspecies variability	10	Default AF in the absence of substance-specific data				
Intraspecies variability	10	Default AF in the absence of substance-specific data				
Route to route extrapolation	1	No indication for route-specific differences in systemic toxicity				
Time duration extrapolation	1	Study duration chronic				
NOAEL to LOAEL extrapolation	/					
Dose response	/					
Severity of key health effects	/	reduced bw gain at 1400 mg formate/kg bw/d				

Overall AF	100	(n.a.)
------------	-----	--------

AECrespiratory tract irritation						
Uncertainty	AF	Justification				
Interspecies variability	1	local effects, no toxicokinetic default assessment and toxicodynamic default assessment factor needed because of the similarity in local effects among rodents and humans: effects on the respiratory and olfactory epithelium, squamous metaplasia and degeneration, there is no evidence that humans should be more sensitive than rodents				
Intraspecies variability	10	Default AF in the absence of substance-specific data				
Route to route extrapolation	1	Subchronic inhalation studies				
Time duration extrapolation	/					
NOAEL to LOAEL extrapolation	/					
Dose response	/					
Severity of key health effects	/	Local effects: squamous metaplasia and degeneration of the respiratory and olfactory epithelia				
Overall AF	10	(n.a.)				

12.2.2 AEL setting

Due to its inherent properties (acidic pH, corrosive substance, volatile) it is most likely that formic acid will induce local effects at a lower dose than systemic effects.

Therefore, it seems to be reasonable to do the risk characterisation starting from systemic AELs and local AECs.

In addition, other international AEL are available:

ADI (residues in food, feed) = 3 mg/kg bw/d (EU SANCO D3/AS D, 2005; JECFA, 2003)¹²

Occupational Exposure Limit: EU WEL, MAK/TLV = 5 ppm or 9.5 mg/m³ (8-hour TWA); IOELV = 5 ppm or 9 mg/m³ (Commission directive 2006/15/EC).

An ARfD was not derived and not required.

The available data (medium term exposure) does not permit to characterize a significant systemic effect in the context of the reduction in body weight, in fact there is no obvious link between the irritant effects (NOAEL: 840 mg/kg) induced by the substance at a high dose, i.e. 2100 mg/kg (LOAEL), and the individual weight loss (decreased food consumption in males but not in females). Finally, in the recovery period, body weight development in males and

 $^{^{12}}$ No detailed information can be provided on how the ADI was derived. Despite this, the ADI can be taken up in the CAR because it is in line with the derived AEL_{long-term}.

females was comparable between the high dose and control groups. Therefore the derivation of ArfD value does not seem relevant.

Systemic AEL

Systemic toxicity is secondary to local irritant effects. The critical systemic endpoint of formate in the toxicological studies was identified as reduced body weight gain. The NOAELs have been derived from the studies in the most sensitive species showing these effects: the rat and mouse. It is suggested to consider this systemic effect in the risk assessment.

Additional note:

Next to the NOAELsystemic used to derive AELs as reported below, the following NOAEL and LOAEL for local effects are also available:

Specie s	Rout e	Study duration	Test substanc e	Dose setting (mg/kg bw/d)	Critical effect	LO(A)EL and NO(A)EL (mg/kg bw/d)	References
Rat	Oral	Subchronic 90 day feeding study	Potassium diformate	0, 420, 840, 2100 mg formate/k g bw/d	Local: gastric irritation, hyperplastic changes in the stomach	as formate: LOAELlocal = 420 NOAELlocal < 420	BPD ID A6.4.1_01 FA_BPR_Ann_II_8_9_2_01
Rat	Oral	Chronic 2- year feeding study	Potassium diformate	0, 35, 280, 1400 mg formate/k g bw/d	Local: gastric irritation, hyperplastic changes in the stomach and gastrointestin al tract	as formate: LOAELlocal = 280 NOAELlocal = 35	BPD ID A6.5_01 FA_BPR_Ann_II_8_9_3_01
Mouse	Oral	Carcinogenici ty study: 80- week feeding study	Potassium diformate	0, 35, 280, 1400 mg formate/k g bw/d	Local: gastric irritation, hyperplastic changes in the forestomach	as formate: LOAELlocal = 1400 (highest concentrati on tested) NOAELlocal = 280	BPD ID A6.7_02. FA_BPR_Ann_II_8_11_2_0 1 2002b
Pig	Oral	Subchronic 140-day feed study	Potassium diformate	0, 149, 359, 760 mg formate/(k g bw/d	Local: gastric effects - forestomach gastritis and erosion/ulcer	as formate: LOAELlocal = 149 NOAELlocal < 149	BPD ID A6.4.1_02 FA_BPR_Ann_II_8_9_2_02
Pig	Oral	Subchronic > 300-day feed study	Potassium diformate	0, 98, 301 mg formate/k g bw/d	No signs of maternal systemic toxicity or toxicity to reproduction or development at any dose level.	as formate: LOAEL, local > 300 NOAEL, local = 300 (highest concentrati on tested)	BPD ID A6.5_02 FA_BPR_Ann_II_8_9_4_0_ JNS 2003

For setting of appropriate Reference Values for oral exposures, it is necessary to differentiate between systemic toxicity (decrease in bw) and local effects (irritation on the gastrointestinal

tract); Reference Values should be set based on the most sensitive endpoint in the most sensitive species. The most sensitive endpoint is the irritation on the gastrointestinal tract.

However, in the case of Formic Acid, due to its corrosivity, local effects must be expected at all dose levels, and a qualitative RC would be the appropriate approach, assuming that the effects leading to classification will also occur in repeated exposure and at lower concentrations/area doses, and the effects will be managed by means of CLP, RMM's and PPE.

Derived reference values based on systemic effects are lower than those based on local effects, considering the applied assessment factors. Hence the local effects are covered by the reference values for systemic effects; we will apply the AEL of systemic effects for the quantitative risk assessment.

Acute and Medium-term AEL

Although human exposure is mainly dermal and by inhalation, the PODs are based on oral studies.

The teratogenicity study performed with sodium formate in the rat cannot be used to derive a systemic NOAEL as no maternal systemic toxicity was reached. No other short-term toxicity studies are available.

A medium-term 90-day oral toxicity study performed with potassium diformate in the rat revealed a NOAEL oral, 90-days, rat = 840 mg formate/kg bw/d (based on decreased bw gain at 2100 mg formate/kg bw/d).

Two medium-term 90-day inhalation studies performed with formic acid itself in the rat and mouse are available. In the rat, no systemic effects were observed up to the highest concentration tested 244 mg/m³. In the mouse, a NOAEC of 122 mg/m³ was determined based on the reduced bw gain observed at 244 mg/m³. When taking into account: Minute Volume mouse = 0.041 L/min, BW mouse = 0.030 kg, inhalation = 360 min, then 122 mg/m^3 corresponds with a systemic dose of ~60 mg/kg bw/d. However, the RMS is convinced that the systemic NOAELs derived from the inhalation studies are not suitable for the determination of systemic AEL's. The systemic effects seen in the mouse study were most probably secondary to the local effects of respiratory irritation induced by formic acid exposure (NOAEL_{local} = 64 mg/m^3 , based on histopathological changes in the nasal region). In these studies formic acid itself and not the salts were used. In the oral studies the less corrosive formate salts were used to reveal systemic effects not secondary to the corrosive effects.

In conclusion, for the derivation of the acute and medium-term AEL, the NOAEL of the oral 90-day study in the rat performed with potassium formate was used.

POD acute and medium-term: NOAEL formate, oral, 90-day feeding study, potassium diformate, rat = 840 mg formate/kg bw/d

Oral absorption: 100%

AF: 10 x 10 (no additional extrapolation factor for duration is considered for the calculation of the acute AEL from the repeated 90-day oral toxicity study)

Acute and Medium-term AEL_{systemic} = 8.4 mg formate/kg bw/d

Long-term AEL

Long-term toxicity studies are available for the rat and mouse.

The 2-year rat study and 80-week mouse study performed with potassium diformate both revealed a NOAEL oral, long-term = 280 mg formate/kg bw/d (based on decreased bw gain at 1400 mg formate/kg bw/d)

POD: NOAEL formate, oral, 2-year feeding study, potassium diformate, rat = 280 mg formate/ kg bw/d

Oral absorption: 100%

AF: 10 x 10

Long-term $AEL_{systemic} = 2.8 \text{ mg}$ formate/kg bw/d rounded to 3 mg formate/kg bw/d¹³

This value corresponds to the ADI.

A NOAEL_{systemic} of 200 mg/kg bw/d is also available (Two-Generation Reproduction Toxicity Study, Rat, oral, feed). However, it can be justified not to derive the $AEL_{long term}$ from this study.

Comparing the results of the 2-generation study (2008b) and the combined chronic toxicity and carcinogenicity study, the results of both studies suggest that formate and its salts exhibit only very minor systemic effects. In both studies animals of the high dose show reduced body weights, body weight gains and food consumption. Unfortunately, the selected doses differed slightly in both studies. The mid dose of the chronic study corresponded to 280 mg/kg bw/d and the mid dose of the 2-generation study corresponded to 203 mg/kg bw/d.

	2-generation stud	ly	Chronic study		
	Formate [mg/kg bw/d]	Decrease in BW gain [%]	Formate [mg/kg bw/d]	Decrease in BW gain [%]	
Low dose	68	-	35	-	
Mid dose	203	-	280	-	
High dose	677 m: 8.8		1400	m: 27, f: 19	

The 2-generation study is a feeding study using sodium formate as test material. No systemic effects including effects on body weight were observed in the first parental generation. However, mean body weights of the high-dose parental F1 males (1000 mg/kg bw/d) of the 2-generation study were statistically significantly decreased during study weeks 9-15 (up to 5.7%). The mean body weight gain of the high-dose F1 males was statistically significantly decreased on several occasions during the study (up to 33.6%). If calculated for the entire treatment period (weeks 0-15) the high-dose F1 males gained about 8.8% less weight than the control males.

¹³ We refer to TAB entry TOX-4 as the impact of rounding is less than 10%. Please note that for this CAR, the risk characterization has been performed with the non-rounded 2.8 mg formate/kg bw/d value. The decision for rounding the AEL long-term was taken at HH WG I-2022; however it was decided that there was no need to alter the risk characterization of the CAR. For product approval, the rounded 3 mg formate/kg bw/d value should be used.

It has to be noted that the route of administration was orally via feed. As well as the body weight gain, the food consumption of male animals of the high dose was also reduced in a similar manner (in average about 9% decreased). Thus, the decrease in body weight gain and the reduced food consumption in high dose parental F1 males correlate and could be indicative of a palatability problem of the highest dose (acerbity of the test substance) since the decrease in body weight gain was not seen in the presence of normal food consumption.

The combined chronic toxicity/carcinogenicity study in the rat (**1** et al. 2002a) was performed via oral administration using potassium formate (1:2) as test material.

In this study, lower body weight and body weight gain than for the controls was seen in the high dose animals together with a minor decrease in food consumption. However, the variation in food consumption was of insufficient magnitude to account for the lower body weight gain. The average decrease in body weight gain accounted in males 27% and in females 19% in this study (104 weeks).

Comparing the results of both studies shows that systemically available formate exhibits only very minor toxicological effects at high doses. Systemic effects other than decreased food consumption, body weight and body weight gain were not observed.

The effects on body weight gain found in the parental F1 animals of the 2-generation toxicity study were, when calculated over the entire treatment period, lower than 10% and could be correlated with the decreased food consumption which may be a hint of palatability problems of the high dose group. Additionally, it should be noted that this minor effect was limited to parental F1 males and was not observed in other generations (e.g. P0).

The effects observed in the chronic feeding study with potassium formate (1:2) were, although also only minor, more pronounced, and not limited to males.

Hence, the minor difference in the established NO(A)ELs of both studies can only be attributed to the minor difference in dose setting. The mid dose, which was the highest dose showing no systemic effects corresponded to 280 mg/kg bw/d formate in the chronic and to 203 mg/kg bw/d formate in the 2-generation study.

In conclusion, the use of the systemic NO(A)EL of 280 mg/kg bw/d formate for derivation of the AEL_{long-term} is justified by the longer treatment period of the chronic study, the more pronounced systemic effects observed in the chronic study and the minor or negligible difference of established NO(A)Els which can be attributed to the slightly different dose setting of both studies.

Local AECs

Formic acid is classified as corrosive. Formic acid is severely irritating and corrosive to the eyes, skin, and mucous membranes (gastrointestinal and respiratory tract) and may cause permanent damage. Due to the corrosivity of formic acid, local effects must be expected at all dose levels.

Inhalation AEC respiratory tract irritation

A quantitative risk characterisation can be performed as repeated dose 13-week inhalation studies are available performed with formic acid in the rat and mouse. An external reference value (AEC) has been derived for the local effect of respiratory tract irritation:

POD: NOAEC formic acid, inhalation, 13 weeks, rat/mice = 60 mg/m³

AF: 10 x 1

-default assessment factor intraspecies: 10;

-interspecies: assessment factor of 1, please see justification below.

-formic acid causes mainly local effects,

-no toxicokinetic default assessment and toxicodynamic default assessment factor are considered to be required because of the similarity in local effects among rodents and humans: effects on the respiratory and olfactory epithelium, squamous metaplasia and degeneration, there is no evidence that humans should be more sensitive than rodents)

Since there are currently no validated animal tests that deal specifically with respiratory tract irritation, an interspecies assessment factor of >1 could be called for in order to cover this additional uncertainty. However, during HH WGI2022 it was decided that an interspecies AF of 1 is acceptable and that a total assessment factor of 10 is sufficient, mainly due to the fact that FA is likely to be a case of direct/pH-driven chemical action on tissue/cell membranes.

The effect of FA is highly likely a simple destruction of membranes due to the physico-chemical properties (e.g. pH) of the chemical concerned as opposed to a mechanism involving local metabolism (e.g. reactive metabolite). If tissue metabolism is involved, which could lead to the formation of different metabolites at different rates in different species, interspecies dynamic differences on how these metabolites interact with specific targets should be considered.

However, Formic acid is a volatile and strongly corrosive organic acid which is in mammals rapidly metabolized to CO_2 and H_2O . It can be concluded that no toxicologically significant or reactive metabolites are formed and that local irritation due to corrosivity is the most sensitive response and leading health effect. Thus, the mechanism of respiratory irritation is direct pH-reactivity and no further kinetic considerations apply. Furthermore, in terms of toxicodynamic, it can be assumed that rats and humans will respond to the insult in the same way since no significant differences in buffer capacity of cells in respiratory tract against strong acids are expected.

For the following reasons an additional safety factor seems not to be necessary:

- NOAEC derived from validated and reliable subchronic inhalation studies in two species (rat, mice)
- Mechanism of respiratory tract irritation is direct pH-reactivity
- Rodents are obligate nasal breathers with a more complex nasal passage and therefore the upper respiratory tract may be more sensitive than in humans

AEC respiratory tract irritation = 6 mg/m^3

(EU workplace exposure limit = 5ppm (9.5 mg/m³), 8-hour time weighted average; $IOELV = 5 ppm \text{ or } 9 mg/m^3$ (Commission directive 2006/15/EC))

Dermal AEC

Repeated dose dermal studies are not available, and consequently the basis for setting an AEC is lacking.

Therefore a qualitative RC will be performed assuming that the effects leading to classification will also occur in repeated exposure and at lower concentrations/area doses, and the effects will be managed by means of CLP, RMM's and PPE.

AECdermal <2% formic acid: does not need classification

Oral AEC

No oral AEC will be derived because all repeated dose oral studies were performed with the salts, potassium diformate or sodium formate, because of their less irritating potency.

It is known from published human data (Malorny, 1969b; DocIIIA6.2-07; section 3.1), that immediately after the drinking of 2 g formic acid as 0.4% aqueous solution transient gastric irritation was observed.

Reference	Study	NOAEL (LOAEL)	AF	Correction for oral absorption	Value
AELshort-term	Subchronic 90 day feeding study, rat	as formate: 840 mg/kg bw/d (2100 mg/kg bw/d)	100	1	8.4 mg/kg bw/d
AEL _{medium} -term	Subchronic 90 day feeding study, rat	as formate: 840 mg/kg bw/d (2100 mg/kg bw/d)	100	1	8.4 mg/kg bw/d
AELlong-term	Chronic 2- year feeding study, rat	as formate: 280 mg/kg bw/d (1400 mg/kg bw/d)	100	1	2.8 mg/kg bw/d rounded to 3 mg/kg bw/d ¹⁴
ARfD	not required				
ADI	EU SANCO D3/AS D, 2005; JECFA, 2003				3 mg/kg bw/d
Occupational exposure limit		EU WEL, MAK/TLV (8-hour TWA) IOELV (Commission Directive 2006/15/EC)			5 ppm or 9.5 mg/m ³ 5 ppm or 9 mg/m ³

12.2.3 Reference values to be used in Risk Characterisation

¹⁴ We refer to TAB entry TOX-4 as the impact of rounding is less than 10%. Please note that for this CAR, the risk characterization has been performed with the non-rounded 2.8 mg formate/kg bw/d value. The decision for rounding the AEL long-term was taken at HH WG I-2022; however it was decided that there was no need to alter the risk characterization of the CAR. For product approval, the rounded 3 mg formate/kg bw/d value should be used.

				D	10 45 2022 070
AECrespiratory tract irritation	Subchronic 13w inhalation study, rat/mice	Rat: 30 mg/m ³ (61 mg/m ³) Mice: 61 mg/m ³ (122 mg/m ³) Overall NOAEC formic acid, inhalation, 13 weeks, rat/mice = 60 mg/m ³	10	n.a.	6 mg/m3

12.2.4 Maximum residue limits or equivalent

MRLs or other relevant reference values	Reference	Relevant commodities	Value	
default MRL	Art.18(1)(b) Reg 396/2005	all	0.01 mg/kg	

12.3 INDUSTRIAL USES

This section has not been evaluated by the CA-BE because the production/formulation process of the active substance is outside the scope of the Biocidal Products Regulation (EU) No 528/2012. As such, exposure estimates for industrial workers during these stages have not been calculated as they are already addressed by other legislation.

Formic acid is severely irritating and corrosive to the eyes, skin, and mucous membranes (gastrointestinal and respiratory tract) and may cause permanent damage. The effect must be managed by means of classification (CLP), Risk Management Measures (RMM's), and Personal Protective Equipment (PPE). The production processes are technically controlled. Workers in industry should be fully trained and protected.

The industry worker exposure during production, filling and mixing processes is routinely determined. The results of 138 measurements made during 2001-2006 indicate that the formic acid concentrations in the air at the workplace did not exceed the threshold limit value of 9.5 mg/m³ (5 ppm; AOEL) at any of the workplaces which cover all types of operations at the production plant.

Conclusion: There is no concern for industrial workers in the production and formulation of the active substance and the biocidal product.

12.4 PROFESSIONAL USES

The biocidal product, Protectol® FM 85, available for professional operators is a concentrated product containing 85% formic acid to be further diluted to the recommended use concentration of 5% for application by CIP. A RTU dilution of 5% can also be made available for small surface trigger spraying. Professionals use products on a prolonged basis and are exposed daily to mixing and loading, maintenance and repair, and spraying.

12.4.1 Systemic effects

Task/ Scenario	Tier/PPE	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Estimated uptake mg/kg bw/d	Estimated uptake/ AEL (%)	Acceptable (yes/no)
Scenario 1, RTU spray, 5% dil	1/none/ventilation 15/h	280	2.8	0.2	7.1%	Yes
Scenario 2a, CIP M&L	1/none/ ventilation 15/h	280	2.8	3.92	140%	No
	2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	280	2.8	0.0482	1.7%	Yes
Scenario 2c, CIP maintenance and repair	1/none/ ventilation 15/h	280	2.8	3.92	140%	No
	2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	280	2.8	0.0482	1.7%	Yes
Scenario 3, re-entry of treated area, RTU spray, 5% dil	1/ 15/h ventilation rate	280	2.8	0.20	7.1%	Yes
Scenario 4, professional bystander exposure to CIP	1/ none/ 15/h ventilation rate	280	2.8	9.1*10 ⁻³	0.3%	Yes
	2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	280	2.8	9.1*10 ⁻³	0.3%	Yes

12.4.1.1 Combined scenarios

A possible scenario combination for CIP applications is mixing/loading and maintenance/repair performed by the same person. We will calculate combined exposure for scenarios 2a and 2c.

Scenarios combined	Tier/PPE	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Estimated uptake mg/kg bw/d	Estimated uptake/ AEL (%)	Acceptable (yes/no)
2a+2c CIP procedure	1/none/ 15/h ventilation rate	280	2.8	7.84	280%	No
2a+2c CIP procedure	2/ impermeable coveralls, boots, gloves and face protection, ventilation 15/h	280	2.8	0.0962	3.4%	Yes

12.4.2 Local effects

As a local AEC for respiratory tract irritation is available, a quantitative risk characterisation can be performed.

Task/ Scenario	Tier/PPE	NOAEC mg/m ³	AEC mg/m ³	Estimated inhalation exposure mg/m ³	Estimated exposure/ AEC (%)	Acceptable (yes/no)
Scenario 1, RTU spray, 5% dil	1/none/ ventilation 15/h	60	6	1.2 (vapour)	20%	yes
Scenario 2a, CIP M&L	1/none/ ventilation 15/h	60	6	2.6 (vapour)	43.3%	Yes
	2/ impermeabl e coveralls, boots, gloves and face protection,	60	6	2.6 (vapour)	43.3%	Yes

						
	ventilation 15/h					
Scenario 2c, CIP maintenance and repair	1/none/ ventilation 15/h	60	6	2.6 (vapour)	43.3%	Yes
	2/ impermeabl e coveralls, boots, gloves and face protection, ventilation 15/h	60	6	2.6 (vapour)	43.3%	Yes
Scenario 3, re- entry of treated area, RTU spray, 5% dil	1/ 15/h ventilation rate	60	6	1.2 (vapour)	20%	Yes
Scenario 4, professional bystander exposure to CIP	1/none/ ventilation 15/h	60	6	2.6 (vapour)	43.3%	Yes
	2/ impermeabl e coveralls, boots, gloves and face protection, ventilation 15/h	60	6	2.6 (vapour)	43.3%	Yes

As formic acid is corrosive at or above a 10% dilution, a qualitative risk characterisation is needed for local dermal and inhalation exposure. This RC is triggered for those BP classified for local effects. In BP where formic acid is present at concentrations that do not trigger classification of the product according to the CLP criteria, RC for local effects is not required.

For use in PT4, the following concentrations are either marketed or made by dilution of a concentrate for professional use:

concentration	РТ	task	Classification with regard to corrosivity	Hazard category	Exposure foreseen
concentrate					

PT4

85%	4	CIP - Mixing and loading Maintenance and repair	Skin corr 1B EUH071	high	Yes, RT accidental, skin, eye				
In-use dilution	In-use dilution								
5%	4	RTU spray	Skin irrit 2 Eye irrit 2	low	Yes, skin, RT accidental, eye				
5%	4	CIP – closed system Maintenance and repair	Skin irrit 2 Eye irrit 2	low	Yes, accidental, skin, eye, RT				

PT4

	Professional user – concentrate – CIP M&L and maintenance/repair										
	Hazard	I					Exposure			Risk	
Hazard Category	Effects in terms of C&L	Additional relevant hazard information	РТ	Who is exposed?	Tasks, uses, processes	Potential exposure route	Frequency and duration of potential exposure	Potential degree of exposure	Relevant RMM&PPE	Conclusion on risk	
High	Skin corr. 1B (H314)	pH85% formic acid = -1.6 EUH071	4	Professional users	CIP M&L: loading of the theoretical product; Maintenance and repair of pipelines and tanks	Skin Eye RT	10 minutes per day, Daily daily	85% Splashes, hand to eye transfer vapour	Product integrated RMM Labelling • Labelling according to CLP • Instructions for use and storage • • Labelling for general safety and hygiene measures (see below) Formulation • Product formulation which reduces e.g. splashes Packaging • Packaging reducing risk for eye exposure by splashes Trained personnel • Trained workers • Containment as appropriate • • Good standard of general ventilation • • Avoidance of contact with contaminated tools and objects • • Training for staff on good practice • Good standard of	ACCEPTABLE +engineering controls +low frequency +short duration +professionals using PPE +professionals following instructions for use +good standard of personal hygiene +professional bystander is expected to use the same set of PPE as the professional user	

			PPE	
			Respiratory protection:	
			In case sufficient ventilation cannot be guaranteed	
			Suitable respiratory protection for lower concentrations or short- term effect: Gas filter for acid inorganic gases/vapours such as SO2, HCI (e.g. EN 14387 Type E). Gas filter for gases/vapours of inorganic compounds (e.g. EN 14387 Type B) Combination filter for gases/vapours of organic, inorganic, acid inorganic and alkaline compounds (e.g. EN 14387 Type ABEK).	
			Suitable respiratory protection for higher concentrations or long- term effect: Self-contained breathing apparatus.	
			The professional bystander needs to observe the same set of PPE as the worker.	
			Hand protection: chemical- resistant gloves	
			Chemical resistant protective gloves (EN 374) Suitable materials also with prolonged, direct contact (Recommended: Protective index 6, corresponding > 480 minutes of permeation time according to EN 374): chloroprene rubber (CR) - 0.5 mm coating thickness butyl rubber (butyl) - 0.7 mm coating thickness fluoroelastomer (FKM) - 0.7 mm coating thickness	

					Polyethylene-Laminate (PE laminate) - ca. 0.1 mm coating thickness Suitable materials for short-term contact (recommended: At least protective index 2, corresponding > 30 minutes of permeation time according to EN 374) polyvinylchloride (PVC) - 0.7 mm coating thickness natural rubber/natural latex (NR) - 0.5 mm coating thickness
					Eye protection:
					Tightly fitting safety goggles (cage goggles) (e.g. EN 166) and face shield
					see respiratory protection
					Skin and body protection:
					coveralls, boots
					Body protection must be chosen depending on activity and possible exposure, e.g. apron, protecting boots, chemical-protection suit (according to EN 14605 in case of splashes or EN ISO 13982 in case of dust).
					<u>General safety and hygiene</u> <u>measures</u>
					Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product. Remove and wash contaminated clothing and gloves, including the inside, before re-use

PT4

	Professional user – dilution – CIP maintenance and repair									
Hazard			Exposure							Risk
Hazard Category	Effects in terms of C&L	Additional relevant hazard information	РТ	Who is exposed?	Tasks, uses, processes	Potential exposure route	Frequency and duration of potential exposure	Potential degree of exposure	Relevant RMM&PPE	Conclusion on risk
Low	5% formic acid: Skin irrit 2 (H315) Eye irrit 2 (H319)	pH TBD (product evaluation)	4	Professional users	CIP: maintenance and repair of pipelines and tanks	Skin, eye, RT	daily	5% FA Splashes, hand to eye transfer vapour	See above; due to the nature of the task, same RMM and PPE apply	ACCEPTABLE RMM and PPE for corr 1B cover potential exposure to skin irrit 2 eye irrit 2 mixture +engineering controls +low frequency +short duration +professionals using PPE +professionals following instructions for use +good standard of personal hygiene +professional bystander is expected to use the same set of PPE as the professional user

Professi	Professional user – dilution – RTU spray small surfaces									
Hazard			Exposure							Risk
Hazard Categor Y	Effects in terms of C&L	Additional relevant hazard information	РТ	Who is exposed?	Tasks, uses, processes	Potential exposure route	Frequenc y and duration of potential exposure	Potentia l degree of exposur e	Relevant RMM&PPE	Conclusion on risk
Low	5% formic acid: Skin irrit 2 (H315) Eye irrit 2 (H319)	pH to be determined (product evaluation)	4	Profession al users	Surface disinfection with trigger spray	Skin, eye, RT	daily application 2 min, 4x/day exposure 120 min per application	5% FA Splashes, hand to eye transfer Vapour Up to 18 ml dil/m ²	Product integrated RMM Labelling -Labelling according to CLP -Instructions for use and storage Formulation -Product formulation which reduces e.g. splashes Packaging -Packaging reducing risk for eye exposure by splashes -Child proof closure -Small package size Trained personnel -Trained workers respecting general safety and hygiene measures (see below) -Good standard of general ventilation -Avoidance of contact with contaminated tools and objects -Training for staff on good practice	ACCEPTABLE +engineering controls +reversible effect +short duration +professionals following instructions for use +experience expected

		-Good standard of personal hygiene
		<u>PPE</u>
		RTU trigger spray:
		gloves, face protection <u>General safety and</u>
		hygiene measures
		Avoid contact with skin, eyes and clothing. Wash hands before
		breaks and immediately after handling the product. Remove and
		wash contaminated clothing and gloves,
		including the inside, before re-use

12.4.3 Conclusion

PT4 CIP and small surface trigger spraying scenarios were performed with the assumption that professional ventilation would result in ventilation rates of min. 15/h. In premises equipped with professional installations, ventilation may be considerably higher. Therefore, we propose to allow for scenario refinements at product authorization stage.

Small surface disinfection - food preparation areas - RTU spray

Exposure of professionals was assessed using a scenario for small surface disinfection of food preparation areas by RTU trigger spraying. Systemic exposure was determined for the inhalation route. A quantitative assessment was done for inhalation of vapour. Where relevant, a qualitative assessment was included for local dermal and inhalation exposure.

At the use concentrations suggested by the applicant (5% FA), the biocidal product presented here is a skin and eye irritant and local dermal effects cannot be excluded. Professionals are exposed to formic acid in in-use concentrations up to 5%.. The professional users are trained; the use of gloves and face protection while spraying should be advised on the label. Taking these protective measures into account, exposure will be reduced. .

Formic acid is a volatile substance (vapour pressure >0.01 Pa at 20°C). Nevertheless, acceptable exposure levels can be demonstrated for professionals during small surface disinfection by RTU spraying with 5% formic acid solutions under conditions of sufficient ventilation (15/h). In any case, premises where these RTU sprays are used, should be well-ventilated both during and after use of the spray.

Conclusion: There is no concern for professionals using the biocidal product at a 5% in-use solution for small surface disinfection by RTU spraying of food preparation areas, when sufficient ventilation is applied. With the exposure models and default values presented here, a safe use can be demonstrated for in-use dilutions of 5% formic acid.

<u>Cleaning in place</u>

Exposure for professionals using **Protectol® FM 85** for cleaning-in-place was assessed. The assessment includes mixing and loading and maintenance and repair. Systemic exposure was determined for the dermal and inhalation route. A quantitative assessment was done for inhalation of vapour. Where relevant, a qualitative assessment was included for local dermal and inhalation exposure.

Without personal protective equipment (PPE) professionals may be exposed during the semi-automated diluting of the concentrated biocidal product intended for use by CIP. The professional users are trained and must use impermeable coveralls, gloves, boots and face protection during the mixing and loading stage; this should be advised on the label. Taking these protective measures into account, exposure is reduced and risk of adverse systemic effects is minimised. This allows to calculate a safe use for formic acid concentrations of 85%. Thus, with the assumption that the obligatory PPE

is used, the total internal dose can be reduced below the long-term AEL for formic acid.

Due to the corrosive nature of the active substance, local dermal effects cannot be excluded. Professionals are exposed to formic acid in concentrations as high as 85%, and to in-use dilutions up to 5%. However, the PPE recommended above will suffice to obtain a safe use for these formic acid concentrations.

Sufficient ventilation should be advised on the label for the mixing and loading phase. In case of spillage of the concentrated product (85% formic acid), the onset of odour and irritant symptoms associated with formic acid exposure would be expected shortly after the exposure begins. Fortunately formic acid has good warning properties. Nevertheless, in situations where sufficient ventilation cannot be guaranteed, RPE (as defined in the SDS of Protectol [®] FM 85) are advised due to the acridity of the concentrate.

Even though formic acid is a volatile substance (vapour pressure >0.01 Pa at 20°C), the external inhalation exposure to vapour is lower than the local AEC_{respiratory tract irritation} for formic acid when sufficient ventilation is applied, even without taking into account RPE protection factors.

The ventilation rate used in these calculations is 15/h, as the use described here is intended for the Food and Feed industry. At product level, specific RMM for ventilation could be suggested to limit the exposure to Formic Acid vapours. In situations where sufficient ventilation cannot be guaranteed, RPE will be required.

During the actual application of the in-use dilution, no exposure is expected as CIP is performed in closed systems.

To limit the risk of local dermal and inhalation exposure during maintenance and repair, the use by professionals, the suggested PPE and RMM, and general safety and hygiene measures are considered sufficient even at high FA concentrations when ventilation is sufficient. It is expected that professional users are aware of the necessity to avoid contact of cleaning/disinfecting liquids with skin, eyes and RT. Under these conditions, local and systemic exposure during maintenance and repair are also considered acceptable.

The exposure of professional bystanders during mixing and loading is covered by the RMM and PPE required for the professional user. Professional bystanders are expected to use the same personal protection as the user. As for systemic exposure, the total internal dose is below the long-term AEL for formic acid when sufficient ventilation is guaranteed.

Under the restrictions described above, risks are acceptable also when the same professional performs the mixing & loading and maintenance and repair.

Conclusion: There is no concern for professionals using the biocidal product for cleaning-in-place purposes, when appropriate PPE (impermeable coveralls, boots, gloves and face protection) and appropriate ventilation are applied. In situations where sufficient ventilation cannot be guaranteed, RPE will be required.

Re-entry of treated areas after small surface disinfection

Secondary dermal and inhalation exposure may occur from a professional re-entering a treated area. However, dermal exposure will be limited by the volatility of formic

acid, and was considered negligible. Inhalation of vapours for the professional bystander will be no higher than values calculated for primary exposure.

Conclusion: There is no concern for professional bystanders entering areas where the biocidal product has been used for small surface disinfection in food preparation areas at a 5% in-use solution, when sufficient ventilation is applied.

General remark:

It is clear that exposure to formic acid vapours can be a critical factor in risk assessment.

These concerns should be dealt with at product authorization level.

Possible refinements that can be suggested include improved assessment factors for ventilation, the use of air measurements and identification of acceptable RMM per type of application.

12.5 NON-PROFESSIONAL USERS

There is no non-professional use of the biocidal product.

12.6 SECONDARY (INDIRECT) EXPOSURE AS A RESULT OF USE

The representative products in this CAR are intended for professional use and in professional premises only where secondary exposure of the general public does not occur. For the general public, at product authorisation stage, secondary exposure via the dermal, oral and inhalation route will have to be considered, or alternatively, the intended uses may have to be restricted by appropriate RMM related to:

-disinfection only in absence of the general public

-access to treated areas only after appropriate ventilation and when treated surfaces are rinsed and fully dried.

12.7 INDIRECT EXPOSURE VIA FOOD

At the time of writing, ARTFood's 'Guidance on Estimating Transfer of Biocidal Active Substances into Foods – Professional Uses' was still in draft form.

Due to its rapid turnover and unlikely accumulation, an in-depth estimation of exposure of humans to formic acid residues through diet as a consequence of surface disinfection is not considered here.

Moreover, dietary exposure to formic acid is highly unlikely for the following reasons:

Biocidal products containing Formic acid are not intended for direct or indirect contact with food or feed. Moreover, residue transfer from surfaces to food are not expected due to the high vapour pressure of the active substance. If such transfer should occur, it would most likely not result in dietary intake, considering the volatility of FA.

15

BPC-43-2022-07B

However, at product authorisation, the need for an assessment of dietary exposure should be reviewed in relation to the inclusion of a rinsing step after application. It should be ascertained whether the argumentation above applies to the biocidal product in question. Factors to take into account are, i.a., composition, intended use and contact time (efficacy).

Additional note: toxicokinetic studies referred to in section 3.1 show that formic acid is fully metabolised in the animal leaving no residues in the animal products. In addition, formic acid is used as a food preservative and has been granted GRAS status (Generally Regarded As Safe) by the US FDA regulatory authority¹⁵.

12.8 PRODUCTION / FORMULATION OF ACTIVE SUBSTANCE

Please refer to section 12.3 on industrial exposure.

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=186.1316&SearchTerm=formic%20a cid

PT4

13 RISK CHARACTERISATION FOR THE ENVIRONMENT

The risk to the environment resulting from the use of formic acid as a PT4 biocide are summarised in the paragraphs below.

The representative product Protectol® FM 85 is intended to be used in a wide variety of products under PT2, 3, 4, 5 and 6. As a PT4 biocide, the product is intended to be used as a surface disinfectant for small surfaces that can come into contact with food/feed, a disinfectant of pipelines, mixing and storage tanks and a disinfectant of equipment used in the preparation storage and consumption of food/feed, by professional users.

Direct emissions are to the surface water and STP, followed by indirect emissions to surface water and soil.

13.1 ATMOSPHERE

The vapour pressure of 42.71 hPa (20 °C; 2007; BPD ID A3_01) and the Henry's Law Constant of 0.16 Pa.m³/mol (20 °C; ECT Oekotoxikologie GmbH; BPD ID A3_11) indicate low to moderate potential for volatilization and evaporation from water and wet surfaces.

Conclusion:

The atmosphere is not considered a compartment of concern

13.2 SEWAGE TREATMENT PLANT (STP)

Summary table on calculated PEC/PNEC values				
	PEC/PNEC _{STP}			
Scenario 1				
on-site	N/A			
off-site	< 8.79x10 ⁻⁴			
Scenario 2				
RTU small scale applications (combined)	< 4.32x10 ⁻⁵			

Conclusion: All PEC/PNEC_{STP} ratios are below 1.

13.3 AQUATIC COMPARTMENT

Summary table on calculated PEC/PNEC values				
	PEC/PNEC _{water}			
Scenario 1				
on-site	$\leq 3.06 \times 10^{-2}$			
off-site	$\leq 2.20 \times 10^{-3}$			
Scenario 2				
	$\leq 4.32 \times 10^{-5}$			

RTU small scale applications	
(combined)	

Conclusion: All PEC/PNEC_{water} ratios are below 1.

13.4 TERRESTRIAL COMPARTMENT

Summary table on calculated PEC/PNEC values				
	PEC/PNEC _{soil}			
Scenario 1				
on-site	N/A			
off-site	$\leq 2.11 \times 10^{-4}$			
Scenario 2				
RTU small scale applications (combined)	$\leq 1.04 \times 10^{-5}$			

<u>Conclusion</u>: The PEC/PNEC_{soil} are below 1 for all assessed scenarios and uses.

13.5 GROUNDWATER

The PEC_{groundwater} values are compared to the maximum permissible concentration of 0.1 μ g/L (98/8/EC, Annex VI, art. 82).

Summary table on calculated PEC values (TIER 1)				
PECgroundwater (µg/L)				
Scenario 1				
on-site	N/A			
off-site	7.04x10 ⁻²			
Scenario 2				
RTU small scale applications 3.46x10 ⁻³ (combined)				

The calculated porewater concentration (as first estimate of the groundwater concentration) is below the groundwater limit concentration of 0.1 μ g/L for both scenarios.

<u>Conclusion</u>: The risk for the groundwater compartment is considered acceptable.

13.6 PRIMARY AND SECONDARY POISONING

13.6.1 Primary poisoning

Not considered relevant.

13.6.2 Secondary poisoning

Conclusion:

Not considered relevant

13.7 AGGREGATED EXPOSURE (COMBINED FOR RELEVANT EMMISSION SOURCES)

Formic acid is intended to be used as an active substance for biocidal products in a wide variety of product types: PT2, PT3, PT4, PT5 and PT6. An aggregated exposure assessment is conducted by summing up all release streams for which an overlap in time and space is to be expected.

Two main release routes separated in time and/or space are considered:

- 1. STP route: PT2, PT4, PT6;
- 2. Manure route: PT3 (Animal housing, Footwear, Animal feet), PT5.

For the STP route, it is considered that the emissions of PT2, PT4 and PT6 are redirected to the same STP. For the manure route, it is considered that the representative products for the respective PT3 and PT5 uses are used on the same farm. In the following paragraphs, the aggregated exposure of those two main release routes is elaborated. Releases to the air compartment are considered not relevant.¹⁶

13.7.1 STP route

13.7.1.1 **Emission estimation**

It is considered that the emissions of PT2, PT4 and PT6 are redirected to the same STP. For PT4, only the scenarios with an off-site STP (scenario 1 - off-site and scenario 2) are taken into account. The local emissions are summarised in the table below.

Summary of aggregated emissions for the STP route				
	ElocalsTP [kg/d]			
PT2 - scenario 1 - sanitary sector	1.75			
PT2 - scenario 2 - industrial premises	0.2			
PT4 – scenario 1 – off-site STP	1.10 ¹⁷			
PT4 - scenario 2 - RTU small scale applications (combined)	0.054			
PT6	0.65			
SUM	3.754			

¹⁶ In the CARs for PT3 and PT5, also emissions to the STP are calculated. However, as the emissions for those PTs are directed predominantly to the manure, only the manure route is considered for those PTs in the aggregated exposure assessment.

¹⁷ Recalculated from C_{influent} of 0.55 mg/L using a capacity of the STP of 2 000 000 L/d.

13.7.1.2 **F**ate and distribution in exposed environmental compartments

Identification of relevant receiving compartments based on the exposure pathway									
Fresh- waterSedimentSea- waterSeawater sedimentSTPAirSoilGround- waterBiota									
STP route	+	(-)	(+)	(-)	++	(-)	+	+	(-)

++ Compartment directly exposed

- Compartment not exposed

+ Compartment indirectly exposed

() Compartment potentially exposed [but unlikely to be a significant concern due to hazard data and / or scale of exposure]

Input parameters (only set values) for calculating the fate and distribution in the environment						
Input	Value	Unit	Remarks			
Molecular weight	46.03	g/mol				
Melting point	8	°C				
Boiling point	100.23	°C				
Vapour pressure (at 12 °C)	2400	Ра				
Water solubility (at 12 °C)	1.09x10 ⁶	mg/l				
Log10 Octanol/water partition coefficient	-2.10		(pH 7)			
Organic carbon/water partition coefficient (Koc)	30	l/kg				
Henry's Law Constant (at 12 °C)	0.101	Pa/m3/mol				
Acid dissociation constant	3.7		Predominant species at a pH of 7 is formate, which is reflected in the pH dependent Koc.			
Biodegradability	Ready biodegradable					
DT50 for degradation in soil (12 °C)	1	day				

Calculated fate and distribution in the STP					
Comportment	Percentage [%]	Demontos			
Compartment	All scenarios	Remarks			
Air	0.04222				

Water	7.991	Calculated with
Sludge	0.2796	SimpleTreat 4.0 ¹⁸
Degraded in STP	91.69	

13.7.1.3 CALCULATED AGGREGATED ΣPEC VALUES

Summary table on calculated SPEC values								
	ΣPECsTPΣPECwaterΣPECsed1ΣPECsoil,twa2ΣPECGW							
	[mg/L]	[mg/L]	[mg/kg _{wwt}]	[mg/kg _{dwt}]	[µg/L]			
STP route	0.15	1.50x10 ⁻²	see ΣPEC_{water}^1	1.06x10 ⁻³	0.24			
	1 Since the PNEC sediment was calculated according to the equilibrium partitioning							

method, the risk assessment for freshwater covers that for the sediment. 2 Initial concentration after sludge application considering the average time for the terrestrial ecosystem. The PNEC_{soil} is derived by equilibrium partitioning from a PNEC_{aquatic} for chronic exposure.

13.7.1.3.1 STP route: refinement of the exposure calculation

The resulting porewater concentration (PEC_{GW}) following sludge application, is above the threshold of 0.1 μ g/L. Therefore the calculated aggregated Σ PEC values for soil and groundwater are refined using FOCUS PEARL v.4.4.4 to model more realistic groundwater concentrations, taking into consideration the specific parameters and formulas indicated according to the TAB v2.

In the table below, the FOCUS PEARL input parameters for Formic Acid are summarised.

PEARL input parameters for substance Formic Acid					
Parameter	Value	Unit	Remarks		
<u>GENERAL</u>					
Molecular weight	46.03	g/mol			
Vapour Pressure	2400	Ра	at 12°C		
Water solubility	1.00x10 ⁶	mg/l	maximum allowed value		
Freundlich sorption					
Kom	17.4	L/kg	pH 7, 20°C (Kom = Koc/1.724)		
Freundlich sorption exponent (1/n)	1	[-]	TAB v2, ENV 22 (conservative value)		
<u>Transformation</u>					
Half-life	1	d			
Molar activation energy	54	kJ/mol	TAB v2, ENV 23		
<u>Crop</u>					

¹⁸ In accordance with TAB entry ENV 9, the concentration of suspended solids (Css) in the effluent is changed manually to 30 mg/L (0.03 kg/m^3).

PT4

Coefficient for uptake by plant	0	[-]	TAB v2, ENV 23
---------------------------------	---	-----	----------------

Simulation was run for both grassland (alfalfa) and arable land (maize) (cfr. TAB v2, ENV 165).

In the case of alfalfa, the scenario considers 4 manure/slurry applications per year on fixed dates 1st of March, 23rd of April, 15th of June and 7th of August (considering 53 days between application) and 5 cm incorporation depth. In the case of maize, one manure/slurry application per year 20 days before crop emergence and 20 cm incorporation depth is considered.

The application rate of the active substance *Appl_rate* [kg/ha] at one specific application date as necessary input parameter in FOCUS groundwater models is calculated on basis of the aggregated concentration in dry sewage sludge in accordance with TAB ENV36:

$$Appl_rate_{agr/grazz} = App_{sewage_sludge_agr/grazz} \times C_{sludge} \times 10^{-6}$$

with

App_{sewage_sludge_agr} = annual sewage sludge application rate on agricultural land = 5,000 kg/ha

Appsewage_sludge_grass = annual sewage sludge application rate on grassland = 1,000 kg/ha

 C_{sludge} = concentration of a.s. in dry sewage sludge [mg/kg] (ref. to eq. 39 in guidance BPR IV B v.2.0).

PEARL input parameters for Application Schemes							
Parameter	v	alue	Unit	Remarks			
Parameter	Grassland	Arable Land	Unit	Remarks			
Crop	Alfalfa	Maize	[-]				
Application type	incorporation	incorporation	[-]				
Date(s)	01 March	20 days before emergence		TAB v2, ENV 36			
Incorporation depth	0.10	0.20	m	TAB v2, ENV 36			
Csludge	13.3	13.3	mg/kg _{dwt}				
Dosage (Appl_rate)	0.0133	0.0665	kg/ha				

PEARL was then run for the nine available locations for each application scheme. Repeat interval for years was set to 1. The resulting groundwater concentrations closest to the 80th percentile are presented below.

PEARL groundwater	assessment [µg/L]
-------------------	-------------------

Location	Grassland	Arable Land
Chateaudun	0.000000	0.000000
Hamburg	0.000000	0.000000
Jokioinen	0.000000	N/A
Kremsmuenster	0.000000	0.000000
Okehampton	0.000000	0.000000
Piacenza	0.000000	0.000000
Porto	0.000000	0.000000
Sevilla	0.00000	0.000000
Thiva	0.000000	0.000000

All modelled groundwater concentrations are below the threshold value of 0.1 μ g/L.

13.7.1.4 **Aggregated Risk Characterisation**

The calculated aggregated $\Sigma \text{PEC/PNEC}$ values for the STP route are summarised in the table below.

Summary table on calculated aggregated Σ PEC/PNEC values for the STP route				
ΣPEC/PNECstp ΣPEC/PNECwater ΣPEC/PNECsed ¹ ΣPEC/PNECsoil,twa ΣPECgw				$\Sigma \mathbf{PEC}_{\mathbf{GW}}$
STP route 3.00×10^{-3} 7.50×10^{-3} see $\Sigma PEC/PNEC_{water^1}$ 7.21×10^{-4} 2.40 (TIER 1)				
1 Since the PNEC sediment was calculated according to the equilibrium partitioning method, the risk assessment for freshwater covers that for the sediment.				

For the groundwater compartment, the risks are considered acceptable after refinement (see §13.7.1.3.1 above).

Conclusion:

The risks for the aggregated STP route for formic acid are acceptable.

13.7.2 Manure route

Not relevant for PT4.

13.8 SUMMARY OF THE RISK ASSESSMENT FOR THE ENVIRONMENT

Summary table on environmental risk assessment					
	STP	Fresh water	Sediment	Soil	Groundwater
Scenario 1 (FDM-industry)					
on-site	N/A	acceptable	acceptable	N/A	N/A
off-site	acceptable	acceptable	acceptable	acceptable	acceptable
Scenario 2 (RTU small scale applications)					
RTU small scale applications (combined)	acceptable	acceptable	acceptable	acceptable	acceptable
Aggregated exposure					
STP route	acceptable	acceptable	acceptable	acceptable	acceptable (TIER 2)

Conclusion:

The risks for the environment from the intended uses of the representative product for PT4 are acceptable.

The risks for the environment from the aggregated exposure of biocidal products containing formic acid are acceptable.

14 RISK CHARACTERISATION FOR THE PHYSICO-CHEMICAL PROPERTIES

Formic acid is thermally stable up to 350 °C at which combustion starts. It is a flammable liquid (flash point in closed cup: 49.5 °C) with a high auto-ignition temperature of 528 °C. Thermal breakdown and combustion products are carbon monoxide and water/hydrogen. Pure formic acid is not corrosive to metals, while FA85% is corrosive to steel, but not corrosive to aluminium (UN test 37.4 C1). Formic acid is not explosive and has no oxidizing properties.

The biocidal product Protectol® FM 85 contains 85% of the active substance formic acid Physical-chemical properties are expected to be similar to the active substance. It is not a flammable liquid (flash point in closed cup: 73.5°C). Protectol® FM 85 is stable in terms of ambient storage conditions. As an acidic product, Protectol® FM 85 is in general compatible with other acid and neutral pH solutions. Contact with strongly alkali solutions should be avoided as neutralization of Protectol® FM 85 (as is the case for many concentrated acids) with alkalis may result in a vigorous reaction. Protectol® FM 85 containing formic acid may have a reducing effect and therefore compatibility with strong oxidizers such as phosphorus pentaoxide should be evaluated carefully. As with many concentrated acids contact of Protectol® FM 85 with powdered metals and inorganic catalysts should be avoided. FA 85% is corrosive to steel, but not corrosive to aluminium. Protectol® FM 85 is construction (BPD IDs A3_02, A3_03, A3_05, A3_06, B3_02, B3_05).

15 MEASURES TO PROTECT MAN, ANIMALS AND THE ENVIRONMENT

Professional users need to be trained and instructed on the proper use of the formic acid, its handling, storage, disposal, the selection and use of protective equipment, and First Aid measures. Safety Data Sheets (SDS) should be supplied.

Consumer products should be labelled with the same or similar information. The labels should transfer the information contained in the SDS into the consumer's language, taking into account the concentration of formic acid.

Human exposure:

Formic acid is corrosive for skin and eye at concentrations from 10% onwards. Concentrations from 2% onwards are skin and eye irritants. Personal protection should be applied, as recommended by classification and labelling, and as established through the risk assessment. See the relevant sections in the CAR for details.

If an unacceptable risk is identified for non-professional users due to exposure to the biocidal product triggering local effects, appropriate product integrated risk mitigation measures, like packaging and/or formulation controls, or other engineering controls shall be applied.

Due to the high volatility and corrosiveness of formic acid, care should be taken when there is potential for exposure via the inhalation route for professionals, non-professionals and bystanders. For the professional user and bystander appropriate RPE are required when handling high formic acid concentrations in conditions of insufficient ventilation. When using lower in-use concentrations, the end user should apply ventilation-related risk mitigation measures to protect himself and possible bystanders. See the relevant sections in the CAR for details. Ventilation-related RMM should be defined at product authorization level,

especially if the risk assessment cannot be refined in other ways (e.g. by performing actual measurements of FA concentrations in air).

If an unacceptable risk is identified for the general public, indirect exposure should be avoided by implementation of appropriate RMM, considering the volatility and corrosive properties of the a.s., and the fact that PPE and RPE are not applicable for the general public.

At product level, the risk assessment should take into account the in-use dilutions for which efficacy is supported by sufficient testing. Effects of other parameters on the risk assessment, such as the necessary contact time and drying time of the mixture, should also be taken into account.

Exposure through the dietary route and livestock exposure: due to its rapid turnover and unlikely accumulation, an estimation of exposure of humans to formic acid residues through diet, and exposure of livestock to FA were not considered. However, it is proposed that the need for assessment of dietary risk for humans and livestock be evaluated at biocidal product authorisation.

Environmental precautions:

Do not empty into drains.

<u>PART D</u> : APPENDICES

APPENDIX I: LIST OF ENDPOINTS

Chapter 1: Identity, Physical and Chemical Properties, Classification and Labelling

Active substance (ISO Name)	Formic Acid
Product-type	2, 3, 4, 5, 6

Identity

Chemical name (IUPAC)

Chemical name (CA)

CAS No

EC No

Other substance No.

Minimum purity of the active substance as manufactured (g/kg or g/l)

Identity of relevant impurities and additives (substances of concern) in the active substance as manufactured (g/kg)

Molecular formula

Molecular mass

Structural formula

|--|

Formic Acid

64-18-6

200-579-1

Min. 99% w/w (BASF)

This information is contained in the BASF PT4 Confidential Annex

 CH_2O_2

46.025

HCOOH

Physical and chemical properties

Melting point (state purity)

Boiling point (state purity)

Thermal stability / Temperature of decomposition

Appearance (state purity)

Relative density (state purity)

Surface tension (state temperature and concentration of the test solution)

8°C
100.23
350°C
Liquid (20°C)
$D_4^{20} = 1.2195$
At 20 °C: 71.5 mN/m

I

	BPC-43-2022-07B
Vapour pressure (in Pa, state temperature)	At 20 °C: 42.71 hPa At 25 °C: 54.96 hPa At 50 °C: 170.7 hPa
Henry's law constant (Pa m ³ mol ⁻¹)	At 20 °C: 0.16 Pa.m ³ /mol
Solubility in water (g/l or mg/l, state temperature)	Completely miscible Corresponding to 1220 g/L (= D_4^{20}) At pH 5 / 7 / 9 At 20.1 ± 0.1 °C
Solubility in organic solvents (in g/l or mg/l, state temperature)	Miscible at ratios: 1:9, 1:1 and 9:1 Miscible at 20 and 30 °C Corresponding to: > 850 g/L N,N-dimethylformamide > 929 g/L 1,4-dioxane
	> 1190 g/L Dichloromethane
Stability in organic solvents used in biocidal products including relevant breakdown products	Waived, since no organic solvent is used in the biocidal product.
Partition coefficient (log P _{ow}) (state temperature)	At pH 5: Log K _{ow} = -1.9 At pH 7: Log K _{ow} = -2.1 At pH 9: Log K _{ow} = -2.3
Dissociation constant	At 20 °C: pK _a = 3.70
UV/VIS absorption (max.) (if absorption > 290 nm state ϵ at wavelength)	n.a.
	40.500
Flammability or flash point	49.5°C
Explosive properties	The substance is not explosive.
Oxidising properties Auto-ignition or relative self-ignition temperature	The substance is not an oxidising liquid 528°C

Classification and proposed labelling

with regard to physical hazards

H290	
H226	

	· · · · · · · · · · · · · · · · · · ·
with regard to human health hazards	H302
	H331
	H314
	H318
	EUH071
with regard to environmental hazards	

Chapter 2: Methods of Analysis

Analytical methods for the active subs	tance
Technical active substance (principle of method)	Titration with sodium hydroxide Confirmatory method: GC-MS chromatography
Impurities in technical active substance (principle of method)	Determination of Water by Karl-Fischer titration
Analytical methods for residues	
Soil (principle of method and LOQ)	UV absorption after stochiometric , enzyme- catalyzed reduction of NAD+ to NADH by formic acid
	Formic acid (formate) is quantitatively oxidized to bicarbonate by nicotinamide adenine dinucleotide (NAD) in the presence of formate dehydrogenase (FDH). FDH Formate + NAD ⁺ + H ₂ O \longrightarrow bicarbonate + NADH + H ⁺
	The amount of NADH formed is stoichiometric to the amount of formic acid. The increase in NADH is measured by means of its light absorbance at 334, 340 or 365 nm 10 mg/kg
Air (principle of method and LOQ)	Ion chromatography; LOQ = 0.1 μ g
Water (principle of method and LOQ)	UV absorption after enzymatic reaction; LOQ = 0.2 mg/L in drinking water; LOQ = 0.2 mg/L in surface water
Body fluids and tissues (principle of method and LOQ)	0.2 mg/L
Food/feed of plant origin (principle of method and LOQ for methods for monitoring purposes)	UV absorption after enzymatic reaction; LOQ = 0.2 mg/L

Food/feed of animal origin (principle of method and LOQ for methods for monitoring purposes)

UV absorption after enzymatic reaction; LOQ = 0.2 mg/L

Chapter 3: Impact on Human Health

Absorption, distribution, metabolism and excretion in mammals

Rate and extent of oral absorption:	Rapid, no quantitative data Assumed 100%
Rate and extent of dermal absorption*:	Corrosive Assumed 100%
Rate and extent of inhalation absorption:	Corrosive Assumed 100%
Distribution:	Significant, no quantitative data
Potential for accumulation:	no indication of accumulation
Rate and extent of excretion:	Rapid elimination via exhalation of CO ₂ ; low urinary excretion of formic acid
Toxicologically significant metabolite(s)	none

 * the dermal absorption value is applicable for the active substance and might not be usable in product authorization

Acute toxicity

Rat LD₅₀ oral

Rat LD₅₀ dermal

Rat LC50 inhalation

Skin corrosion/irritation

730 mg/kg bw¹⁹ Classification as Acute tox cat. 4 (oral) is warranted; H302.

No data for Formic Acid Sodium formate: LD₅₀ >2000 mg/kg bw

7.4 mg/l Classification as Acute tox cat. 3 (inhalation) is warranted; H331.

Formic Acid is classified as Skin Corr 1A, H314 (harmonised classification) Formic acid solutions ≥ 2% are considered skin irritants

 $^{^{19}}$ RAC agreed in June 2022 on the classification and labelling for formic acid according to Regulation (EC) No 1272/2008 : H302 (& H331) duly confirmed. LD_{50} values from the adopted RAC opinion that will need to be used in biocidal product authorisation.

	BPC-43-2022-076		
Eye irritation	Formic Acid is classified as Skin Corr 1A, H314 (harmonised classification), covering also eye damage/irritation effects		
	Formic acid solutions $\geq 2\%$ are considered eye irritants		
Respiratory tract irritation	Classification as EUH071 'corrosive to the respiratory tract' is warranted as the substance is classified for inhalation toxicity with corrosivity as the mechanism of toxicity.		
Skin sensitisation (test method used and result)	No classification for skin sensitization warranted (Buehler test: no sensitising properties shown)		
Respiratory sensitisation (test method used and result)	There is no indication that formic acid would be a respiratory sensitizer.		
Repeated dose toxicity			
<u>Short term</u>			
Species / target / critical effect	No data available on short-term toxicity Covered by subchronic toxicity studies		
Relevant oral NOAEL / LOAEL	No oral repeated dose study available		
Relevant dermal NOAEL / LOAEL	No dermal repeated dose study available		
A CALL CONTRACTION OF THE CONTRACT OF THE CONTRACT.	No dermal repeated dose study available		
Relevant inhalation NOAEL / LOAEL	No dermal repeated dose study available No inhalation repeated dose study available		
	· · · · ·		
Relevant inhalation NOAEL / LOAEL	· · · · · ·		
Relevant inhalation NOAEL / LOAEL <u>Subchronic</u>	No inhalation repeated dose study available Rat, pig (oral), rat, mouse (inhal) local: histological changes in stomach (rat, pig) and upper respiratory tract (rat, mouse) syst: decreased body weight gain (rat, oral & mouse, inhalation) As formate: Rat LOAELsyst 2100 mg/kg bw/d NOAELsyst 840 mg/kg bw/d NOAELlocal 420 mg/kg bw/d NOAELlocal 5760 mg/kg bw/d NOAELsyst 760 mg/kg bw/d		
Relevant inhalation NOAEL / LOAEL <u>Subchronic</u> Species/ target / critical effect	No inhalation repeated dose study available Rat, pig (oral), rat, mouse (inhal) local: histological changes in stomach (rat, pig) and upper respiratory tract (rat, mouse) syst: decreased body weight gain (rat, oral & mouse, inhalation) As formate: Rat LOAELsyst 2100 mg/kg bw/d NOAELsyst 840 mg/kg bw/d NOAELlocal 420 mg/kg bw/d NOAELlocal <420 mg/kg bw/d		

	BPC-43-2022-07B
Relevant inhalation NOAEL / LOAEL	Rat LOAEC _{syst} not achieved
	NOAEC _{syst} 244 mg/m ³
	LOAEC _{local} 61 mg/m ³
	NOAEC _{local} 30 mg/m ³
	Mouse LOAEC _{syst} 244 mg/m ³
	NOAEC _{syst} 122 mg/m ³
	LOAEC _{local} 122 mg/m ³
	NOAEC _{local} 61 mg/m ³
	overall NOAEC _{local} 60 mg/m ³
	(histopathological changes in nasal region of
	rats and mice at 122 mg/m ³)
Long term	
Species/ target / critical effect	Rat, pig (oral)
	local: histological changes in stomach & GI (rat)
	syst: decreased body weight gain (rat)
Relevant oral NOAEL / LOAEL	As formate:
	Rat LOAEL _{syst} 1400 mg/kg bw/d
	NOAEL _{syst} 280 mg/kg bw/d
	LOAEL _{local} 280 mg/kg bw/d
	NOAEL _{local} 35 mg/kg bw/d
	Pig NOAEL _{syst} 301 mg/kg bw/d
Relevant dermal NOAEL / LOAEL	No dermal repeated dose study available
Relevant inhalation NOAEL / LOAEL	No inhalation repeated dose study available
Genotoxicity	Formic acid gave negative results in the in
	vitro gene mutation study in bacteria, the in
	vitro cytogenicity study in mammalian cells,
	and <i>in vitro</i> gene mutation assay in mammalian cells.
	Chromosome aberrations were observed; it
	was concluded that formic acid is not itself
	clastogenic but that the acidic conditions of the medium were responsible for the
	chromosome aberrations.
	No <i>in vivo</i> genotoxicity studies are warranted.
	Formic acid has no genotoxic potential.

Carcinogenicity

	BPC-43-2022-07B		
Species/type of tumour	Rat, mouse: no evidence of a tumorigenic effect in the stomach or any other tissue was found.		
	Mouse: a higher incidence of primary lung tumours, bronchiolo-alveolar adenomas and carcinomas was not of toxicological relevance.		
Relevant NOAEL/LOAEL	As formate:		
	Rat LOAEL _{local} 280 mg/kg bw/d		
	NOAEL _{local} 35 mg/kg bw/d		
	LOAEL _{syst} 1400 mg/kg bw/d		
	NOAEL _{syst} 280 mg/kg bw/d		
	Mouse LOAEL _{local/syst} 1400 mg/kg bw/d		
	NOAEL _{local/syst} 280 mg/kg bw/d		
Reproductive toxicity			
Developmental toxicity			
Species/ Developmental target / critical	Rat, rabbit		
effect	Formate: no developmental toxicity and teratogenicity observed		
Relevant maternal NOAEL	As formate:		
	Rat NOAEL 640 mg/kg bw/d		
	Rabbit NOAEL 670 mg/kg bw/d		
Relevant developmental NOAEL	As formate:		
	Rat NOAEL 640 mg/kg bw/d		
	Dabbit NOAEL 670 mg/kg bw/d		

Fertility

Species/critical effect

Relevant parental NOAEL

Relevant offspring NOAEL

Relevant fertility NOAEL

Neurotoxicity

Rabbit NOAEL 670 mg/kg bw/d

Rat

Formate: no adverse effects on fertility observed

As formate: NOAEL 200 mg/kg bw/d

As formate: NOAEL 670 mg/kg bw/d

As formate: NOAEL 670 mg/kg bw/d

	BPC-43-2022-07B
Species/ target/critical effect	Formic acid is associated with optical nerve and photoreceptor toxicity at high doses. However, adverse effects on the optical nerve and photoreceptors are considered to be an exclusive sequel of acute methanol intoxication in primates. Classification of formic acid as neurotoxic is not warranted.
Developmental Neurotoxicity	
Species/ target/critical effect	No evidence of a neurotoxic effect is found in developmental toxicity studies.
Immunotoxicity	
Species/ target/critical effect	No immunotoxicity studies available There is no evidence from skin sensitisation, repeated dose or reproduction toxicity studies, that formic acid may have immunotoxic properties.
Developmental Immunotoxicity	
Species/ target/critical effect	No developmental immunotoxicity studies available

Other toxicological studies

None available

Medical/human data

Human data are available from health records from industry and from clinical case reports (accidental or suicidal).

<u>Oral exposure</u>

Due to the corrosivity of formic acid, local effects must be expected at all dose levels. The amount ingested and the concentration determine the grade and the location of the effects. Therefore, the observations range from moderate burns around the mouth to severe corrosion of the gastro-intestinal tract with destruction of the esophagus, perforation of the stomach, and corrosion of the small intestine together with massive bleeding and systemic toxicity (Systemic toxicity observed after ingestion of 30 g formic acid or more).

Accidental and suicidal oral exposure records report reversible burns of the oesophagus after ingestion of small quantities (up to 10g). Consumption of between 5 and 30 g of formic acid led to minor superficial oropharyngeal burns or more severe symptoms including abdominal pain, vomiting, dyspnea and dysphagia, hematemesis and pneumonitis, and esophageal strictures. Doses up to 45 g formic acid were survived by most patients. The majority of patients died after doses between 45 – 200 g formic acid. Reported symptoms at high doses were corrosion of the gastro-intestinal tract, metabolic acidosis, haemolysis, loss of blood pressure, massive bleeding, hepatic and renal failure, and death.

Dermal exposure

Due to the corrosivity of concentrated formic acid, local effects must be expected following contact to the skin and to the eyes. Local burns heal only slowly. Tissue destruction of the skin may result in scarring. Systemic effects may result after contact of concentrated formic acid to extended areas of the body surface. Occupational and accidental dermal exposure records report skin corrosion and metabolic acidosis.

<u>Inhalation</u>

Systemic effects are unlikely to occur. Workplace measurements showed mean values and 95% percentiles far below the threshold limit of 5 ppm or 9.5 mg/m³. Uptake of formic acid at this threshold exposure concentration equals approx. 0.5% of the metabolic rate observed in non-human primates. Therefore, an effect on the blood pH is unlikely. Formic acid inhalation concentrations from 30 ppm onwards are regarded as being immediately dangerous to life and health.

One accidental inhalation exposure record reported reversible Pulmonary dysfunction in the form of Reactive Airway Dysfunction Syndrome. Suicidal inhalation exposure records (mixing of formic acid with concentrated sulphuric acid to form carbon monoxide) report death due to CO intoxication alongside corrosion/irritation of skin, trachea, lungs, stomach due to formic acid fumes.

Summary

Value	Study	Safety factor	
8.4 mg/kg bw/d	Subchronic 90 day feeding study, rat	100	
8.4 mg/kg bw/d	Subchronic 90 day feeding study, rat	100	

 $\mathsf{AEL}_{\mathsf{short-term}}$

AELmedium-term

AEL _{long} -term	2.8 mg/kg bw/d rounded to 3 mg/kg bw/d ²⁰	Chronic 2-year feeding study, rat	100
ADI ²¹	3 mg/kg bw/d	EU SANCO D3/AS D, 2005; JECFA, 2003	
ARfD	not required		
Occupational exposure limit	5 ppm or 9.5 mg/m ³	EU WEL, MAK/TLV (8-hour TWA)	
•	5 ppm or 9 mg/m ³	IOELV (Commission Directive 2006/15/EC)	
AECresp tract irrit	6 mg/m ³	Subchronic 13w inhalation study, rat/mice	10

MRLs

Relevant commodities

default MRL acc to Art.18(1)(b) Reg 396/2005

Reference value for groundwater

According to BPR Annex VI, point 68

Dermal absorption

Study (in vitro/vivo), species tested

Formulation (formulation type and including concentration(s) tested, vehicle)

Dermal absorption values used in risk assessment

None, corrosive substance

N.A.

N/A

100%

Acceptable exposure scenarios (including method of calculation)

Formulation of biocidal product	Not evaluated
Intended uses	Professional uses:
	Small surface disinfection by ready-to-use (RTU) trigger spray; cleaning-in-place (CIP)
Industrial users	Not evaluated

²⁰ We refer to TAB entry TOX-4 as the impact of rounding is less than 10%. Please note that for this CAR, the risk characterization has been performed with the non-rounded 2.8 mg formate/kg bw/d value. The decision for rounding the AEL long-term was taken at HH WG I-2022; however it was decided that there was no need to alter the risk characterization of the CAR. For product approval, the rounded 3 mg formate/kg bw/d value should be used.

²¹ If residues in food or feed.

BPC-43-2022-07B

Professional users	Small surface disinfection by RTU trigger spray: PPE: gloves, eye/face protection RMM: sufficient ventilation Models used:
	Inhalation: ConsexpoWeb, exposure to spray, instantaneous release
	Entry of treated area after RTU spraying – small surface disinfection RMM: sufficient ventilation
	Models used: Inhalation of vapours: ConsexpoWeb, evaporation, area of release increases over time
	CIP: Mixing & loading, post-application: PPE: chemical-resistant gloves, eye/face protection, coveralls, boots; appropriate RPE when ventilation is insufficient RMM: sufficient ventilation
	Models used: Dermal exposure: TNsG Model 7 for liquid semi-automated transfer/pumping Inhalation of vapours: ConsexpoWeb evaporation, area of release constant
Non professional users	Not evaluated
General public	Not evaluated
Exposure via residue in food	Dietary exposure to formic acid from the representative uses is considered highly unlikely. At product authorisation, the need for an assessment of dietary exposure should be reviewed in relation to the inclusion of a rinsing step after application.

Chapter 4: Fate and Behaviour in the Environment

Route and rate of degradation in water

_

_

_

BPC-43-2022-07B

Hydrolysis of active substance and relevant metabolites (DT₅₀) (state pH and temperature)

Photolytic / photo-oxidative degradation of active substance and resulting relevant metabolites

Readily biodegradable (yes/no)

Inherent biodegradable (yes/no)

Biodegradation in freshwater

Biodegradation in seawater

Non-extractable residues

Distribution in water / sediment systems (active substance)

Distribution in water / sediment systems (metabolites)

Route and rate of degradation in soil

Mineralization (aerobic)

Laboratory studies (range or median, with number of measurements, with regression coefficient)

DT_{50lab} (20°C, aerobic):

DT_{90lab} (20°C, aerobic):

DT_{50lab} (10°C, aerobic):

DT_{50lab} (20°C, anaerobic):

degradation in the saturated zone:

Field studies (state location, range or median with number of measurements)

DT_{50f}:

DT_{90f}:

Anaerobic degradation

Soil photolysis

Non-extractable residues

Relevant metabolites - name and/or code, % of applied a.i. (range and maximum)

Soil accumulation and plateau concentration

Biodegradation during manure storage

DT50 > 1 year (pH 4, 7 and 9; 49.9±0.5 °C) DT50 > 20.7 years (pH 7; 12 °C)

• Direct photolysis: not expected

• Photo-oxidation with OH-radicals in water: DT50 HCOO- = 35 years

Yes ---------

-
-
-
-
-
-
-
Open literature data suggest DT_{50} -values in the range of 1 day for biodegradation of formic acid in soil, even at low temperatures.
1 day (12 °C)
-
Indication that anaerobic degradation may be possible.

Not relevant due to rapid degradation in soil.

_

0.1 µg/L

_

_

PT4

Biodegradation during manure storage

 $DT_{50} \le 10.5 \text{ days} (20 \text{ °C})$ $DT_{50} \le 19.9 \text{ days} (12 \text{ °C})$

Adsorption/desorption

Ka, Kd Kaoc , Kdoc pH dependence (yes / no) (if yes type of dependence)

The Koc for formic acid is pH dependent, with an increasing Koc at increasing pH levels. For risk assessment purposes at a pH of 7, a Koc value of 30 L/kg (log Koc of 1.48) is used.

Fate and behaviour in air

Direct photolysis in air Quantum yield of direct photolysis Photo-oxidative degradation in air

Volatilization

Reference value for groundwater

According to BPR Annex VI, point 68

Monitoring data, if available

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

Chapter 5: Effects on Non-target Species

Toxicity data for aquatic species (most sensitive species of each group) : **FRESHWATER**

Species	Time-scale	Endpoint	Toxicity	
<u>Fish</u>				
Oncorhynchus mykiss	96 h	LC ₅₀	3500 mg/L	
Invertebrates				
Daphnia magna	48 h	EC ₅₀	540 mg/L	

-_

Latitude: -Season: -DT₅₀ = 855.7 hours

Daphnia magna	21 d	NOEC	100 mg/L	
<u>Algae</u>				
Desmodesmus	72 h	ErC ₅₀	> 1000 mg/L	
subspicatus	72 h	NOErC	1000 mg/L	
Microorganisms				
Activated sludge	3 h	EC ₁₀	> 500 mg/L	

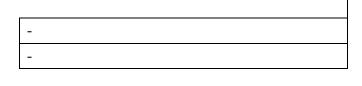
Toxicity data for aquatic species (most sensitive species of each group) : SEAWATER

Species	Time-scale	Endpoint	Toxicity				
<u>Fish</u>	<u>Fish</u>						
Scophthalmus maximus	96 h	LC ₅₀	1720 mg/L				
<u>Invertebrates</u>	Invertebrates						
Acartia tonsa	48 h	EC50	531 mg/L				
Algae							
Skeletonema costatum	72 h	ErC ₅₀	> 1000 mg/L				

Effects on earthworms or other soil non-target organismsAcute toxicity to-Reproductive toxicity to-

_

_


_

_

Effects on soil micro-organisms

Nitrogen mineralization

Carbon mineralization

Effects on terrestrial vertebrates

Acute toxicity to mammals

Acute toxicity to birds

Dietary toxicity to birds

Reproductive toxicity to birds

Effects on honeybees

Acute oral toxicity

Acute contact toxicity

NOAELmammal, oral_chr = 280 mg/kgbw.day

-

_

_

-

_

BPC-43-2022-07B

Effects on other beneficial arthropods

Acute oral toxicity

Acute contact toxicity

Acute toxicity to

Bioconcentration

Bioconcentration factor (BCF)

- Estimated BCFfish = 0.00327 L/kg_{wwt}
- Estimated BCFearthworm = 0.84 L/kg_{wwt}

Depration time (DT₅₀)

Depration time (DT₉₀)

Level of metabolites (%) in organisms accounting for > 10 % of residues

Chapter 6: Other End Points

APPENDIX II: HUMAN EXPOSURE CALCULATIONS

Scenario 1, RTU trigger spray, exposure to vapour, Protectol® FM 85 5% dilution - ConsExpo

Substance	
Name	Formic Acid
Molecular weight	46 g/mol
K _{ow}	-2.1 10Log
Product	
Name	FA dilution 5 %
Weight fraction substan	ce 5 %
Population	
Name	Professionals
Body weight	60 kg
Frequency	4 times per day
Description	RTU trigger spray, 4 x 2 min, 18 ml/m ²

Exposure model	Exposure to spray - instantaneous release
Exposure duration	120 minute
Product is substance in pure form	า ทอ
Molecular weight matrix	
The product is used in dilution	no
Amount of solution used	18 g
Weight fraction substance	5 %
Room volume	25 m ³
Ventilation rate	15 per hour
Inhalation rate	1.25 m³/hr


Absorption model	Fixed fraction
Absorption fraction	1

Results

Inhalation tier 1

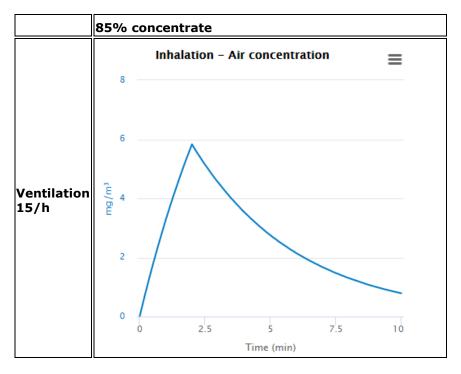
	5 %
Mean event concentration	1.2 mg/m ³
Peak concentration (TWA 15 min)	9.4 mg/m ³
Mean concentration on day of exposure	$4.0 \times 10^{-1} \text{ mg/m}^3$
Year average concentration	$4.0 \times 10^{-1} \text{ mg/m}^3$
External event dose	$5.0 \times 10^{-2} \text{ mg/kg bw}$
External dose on day of exposure	$2.0 \times 10^{-1} \text{ mg/kg bw}$
Internal event dose	$5.0 \times 10^{-2} \text{ mg/kg bw}$
Internal dose on day of exposure	$2.0 \times 10^{-1} \mathrm{mg/kg}$ bw/day
Internal year average dose	$2.0 \times 10^{-1} \text{mg/kg bw/day}$

Graph II.1 Formic Acid air concentration following RTU spraying in a 25 m³ room (18 ml/m², 1 m² surface, ventilation rate 15/h)

Scenario 2a, exposure to vapour during mixing & loading Protectol® FM 85 for application by CIP

Substance	
Name	Formic Acid
Molecular weight	46 g/mol
K _{ow}	-2.1 10Log
Product	
Name	FA 85 %
Weight fraction substand	ce 85 %
Population	
Name	Professionals
Body weight	60 kg
Frequency	once per day for professionals
Description	Dosing in CIP holding tanks

Exposure to vapour - Evaporation
10 minute
ו חס
18 g/mol
no
70000 g
85 %
25 m ³
15 per hour
1.25 m³/hr
20 °C
4.27E+03 Pa
46 g/mol
10 m/hr
constant
100 cm ²
2 minute
Fixed fraction
1


Results

Inhalation tier 1

Mean event concentration 2.6 mg/m^3 Peak concentration (TWA 15 min) 2.6 mg/m^3 Mean concentration on day of exposure $1.8 \times 10^{-2} \text{ mg/m}^3$

Year average concentration	1.8 × 10 ⁻² mg/m ³
External event dose	$1.0 \times 10^{-2} \text{ mg/kg bw}$
External dose on day of exposure	9.1×10^{-3} mg/kg bw
Internal event dose	9.1×10^{-3} mg/kg bw
Internal dose on day of exposure	9.1×10^{-3} mg/kg bw/day
Internal year average dose	9.1×10^{-3} mg/kg bw/day

Graph II.2 Formic Acid air concentration during mixing and loading in preparation of PT4 CIP (85% concentrate, application duration 2 min, room volume 25 m³, ventilation rate 15/h)

APPENDIX III: ENVIRONMENTAL EMISSION (AND EXPOSURE) CALCULATIONS

This appendix contains the following documents :

- PEC calculations scenario 1;
- PEC calculations scenario 2 combined ;

PEC calculations aggregated exposure.

PEC_PT4_scenario 2_revApril2022.xlsx

P_revApril2022.xlsx

APPENDIX IV: LIST OF TERMS AND ABBREVIATIONS

Not relevant

APPENDIX V: OVERALL REFERENCE LIST

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	1994	Annex II.1 - 8.12.3 / BPD ID A6.12.3_01a	Werksärztlicher Dienst, Department of Occupational Medicine, Unveröffentlichte Mitteilung. BASF, Internal information, non-GLP / Unpublished	Yes	BASF SE (LoA: Kemira / Taminco)
	2002	Annex II.1 - 8.12.3 / BPD ID A6.12.3_01b	Werksärztlicher Dienst, Department of Occupational Medicine, Unveröffentlichte Mitteilung. BASF, Internal information, non-GLP / Unpublished	Yes	BASF SE (LoA: Kemira / Taminco)
Altaweel MM et al.	2009	Annex II.1 - 8.8 / FA_BPR_Ann_II_8_8_11	Ocular and Systemic Safety Evaluation of Calcium Formate as a Dietary Supplement. JOURNAL OF OCULAR PHARMACOLOGY AND THERAPEUTICS Volume 25, Number 3, 223-230, / Published	No	Public
Altiparmak UE	2013	Annex II.1 - 8.13.2 / FA_BPR_Ann_II_8_13_5_01	Toxic optic neuropathies. Curr Opin Ophthalmol, 24:534– 539, / Published	No	Public
Andreae, M. O. & Merlet, P.	2001	CAR (ED) / -	Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cy. 15, 955–966 , / Published	No	Public
Anonymous	1990	Annex II.1 - 8.12.8 / BPD ID A6.12.8_01b	NIOSH Pocket Guide to Hazardous Chemicals. U.S. Departm. of Health and Human Services. Washington, D.C., USA, / Published	No	Public
Anonymous	2007	Annex II.1 - 5.1, 5.2, 5.3 / BPD ID A4.1_01	UV test for the determination of Formic Acid in foodstuffs and other materials. R-Biopharm, Cat. No. 10 979732 035. - / Published	No	Public
Anonymous	2019		Formic acid: Degradation kinetics in water, Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. FATF, September10_ 2019. non-GLP / Unpublished	Yes	FATF

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Anonymous	2019	Annex II.1 - 10.1, 10.2/ FA_Addendum_Soil_Deg_2019-08-20	Formic acid: Fate and degradability, Soil and Manure, Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. FATF, August20_ 2019. non- GLP / Unpublished	Yes	FATF
Anonymous	2020	Annex II.1 - 10.1 / FA_Addendum_Manure_Deg_2020-09- 07	Formic Acid: Degradability in Manure; Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. FATF, September07_2020. Non-GLP / Unpublished	Yes	FATF
Anonymous	2020	Annex II.1 – 8.9.2 / 20200904_BASF_FA_Inhalation MAK	Compilation on public information on the MAK value of formic acid; FATF, September04_2020. non-GLP / Unpublished	Yes	FATF
Anonymous	2021	Annex II.1 - 8 / 20210117_ FA_BASF_ToxicityEndpoints	Formic acid: Toxicity Endpoints (LC ₅₀ acute inhalation, NOAEC local effects in 90-days rat; Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. FATF, January17_2021. Non-GLP / Unpublished	Yes	FATF
Anonymous	2021	data / 20210225	Formic acid: Use of information from public literature as key studies: Degradation in soil, Degradation in manure; Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. BASF SE and Kemira OYJ, February25_2021. Non-GLP / Unpublished	Yes	BASF SE, Kemira OYJ
Anonymus	2021	Addendum: Parameter justification / 20210117_FA_BASF_Justification HHRA Parameters	Formic Acid: Human Health Risk Assessment, Justifications for parameter adaptations; Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. BASF SE, January17_2021. Non-GLP / Unpublished	Yes	BASF SE

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Anonymus	2021	Addendum: Parameter justification / 20210630_FA_BASF_Justification_parti al vapour pressure	Formic Acid: Human Health Risk Assessment, Justifications for partial vapour pressure; Addendum to the biocidal active substance registration dossier of formic acid according to biocidal products regulation (EU) No 528/2012. BASF SE, June 30_2021. Non-GLP / Unpublished	Yes	BASF SE
Atkinson R	1989	Annex II.1 - 10.3.2 / BPD ID A7.3.2_01	Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monograph No. 1, / Published	No	Public
Bakovic M et al.	2015	Annex II.1 - 8.12.2 / FA_BPR_Ann_II_8_12_2_11.pdf	Suicidal chemistry: combined intoxication with carbon monoxide and formic acid. Int J Legal Med; published online; DOI 10.1007/s00414-015-1208-0, / Published	No	Public
	2014	Annex III.1 - 3.9 / FA_BPR_ID_3_9	Dichte und Viskosität von 75 % Ameisensäure in Wasser (Density and viscosity of formic acid 75% in water). BASF SE Process Research & Chemical Engineering, 2014.209.1. non-GLP / Unpublished	Yes	BASF SE
Baziramakenga R and Simard RR	1998	Annex II.1 - 10.1 / -	Low molecular weight aliphatic acid contents of composted manures. J. Environ. Qual. 27, 557-561., / Published	No	Public
	2007	Annex II.1 - 3.11, 4.6, 4.17.1; [BASF: III-B 3.4] , Annex III.1 - 4.17.1 / BPD ID A3_02	Evaluation of physical and chemical properties according to Directive 67/548/EC Annex V. BASF AG, GCT/S-L511. Laboratory study code SIK-Nr. 07/1018. GLP / Unpublished	Yes	FATF
Boeniger MF	1987	Annex II.1 - 8.8 / BPD ID A6.2_09	Formate in urine as a biological indicator of formaldehyde exposure: a review . Am. Ind. Hyg. Assoc. J. 48(11), 900-908, / Published	No	Public
Bouchard M, Brunet RC, Droz P-O, Carrier G	2001	Annex II.1 - 8.8 / BPD ID A6.2_03	A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans . Toxicol. Sci. 64, 169-184, / Published	No	Public
	2007	Annex III.1 - 3.6.2 / BPD ID B3_05	Protectol FM 85 (85% Formic acid) - Compatibility with other products. BASF plc - Biocides Development, non-GLP / Unpublished	Yes	BASF SE

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Buxton GV, Greenstock CL, Helman WP, Ross AB	1988	Annex II.1 - 10.1.1.1.b / BPD ID A7.1.1.1.2_01	Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxy radicals (.OH/.O-) in aqueous solution. J. Phys. Chem Data 17(2), 513-882, / Published	No	Public
Chameides, W. L. & Davis, D. D.	1983	Annex II.1 - 10.1 / -	Aqueous-phase source of formic acid in clouds. Nature 304, 427–429, / Published	No	Public
Chan TC, Williams SR, and Clark RF	1995	Annex II.1 - 8.12.2 / BPD ID A6.12.2_09	Formic acid skin burns resulting in systemic toxicity Annals of Emerg. Medicine 26, 383-386, / Published	No	Public
Chou WL, Speece RE, Siddiqi RH	1979	Annex II.1 - 10.1.3.1.b, Annex II.1 - 10.1.5 / BPD ID A.7.1.2.1.2_01	Acclimation and degradation of petrochemical wastewater components by methane fermentation. Biotechnol. Bioeng. Symp 8. 391-414, / Published	No	Public
Clay KL, Murphy RC, Watkins D 1975 1994	Annex II.1 - 8.8 / BPD ID A6.2_11	Experimental methanol toxicity in the primate: Analysis of metabolic acidosis. Toxicol. Appl. Pharmacol.34, 49-61, / Published	No	Public	
	1994	Annex II.1 - 9.1.3.2, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.3_04		Yes	FATF
	1994	Annex II.1 - 9.1.2, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex III.1- 9.1 / BPD ID A7.4.1.2_05	The toxicity to Acartia tonsa of potassium formate liquor. Binnie Environmental Ltd. , ENV341/109410.OUL. GLP / Unpublished	Yes	FATF
1998 Annex II.1 - 8.3_03	Annex II.1 - 8.12.8 / FA_BPR_Ann_II_8_12_8_03.pdf	FORMIC ACID POISONING IN A TERTIARY CARE CENTER IN SOUTH INDIA: A 2-YEAR RETROSPECTIVE ANALYSIS OF CLINICAL PROFILE AND PREDICTORS OF MORTALITY. The Journal of Emergency Medicine, Vol. 44, No. 2, pp. 373–380, / Published	No	Public	
	1998	Annex II.1 - 8.3_03 / BPD ID A6.1.5_02/ FA_BPR_Ann_II_8_3_03	Formi-LHS – Skin sensitisation Study in the Guinea Pig. Report No. 1516/22-1032, January 1998 / unpublished.	Yes	BASF (LoA Kemira)

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2007	Annex II.1 - 3.2, 3.4, 3.5, 3.7, 3.1.2, 3.1.3, 3.6, 3.8, 3.13, 3.15, 3.16, 9.1.2, Annex III.1 - 3.1.1, 3.1.2, 3.4.2.2, 3.8, 3.9 / BPD ID A3_01	physico-chemical properties of "Formic acid". BASF AG, GKA	Yes	FATF
	2018	Annex II.1 - 3.2 / 20181112_07L00084 Amendment01 Final Report BPD_ID_A3_01		Yes	FATF
	1992	Annex II.1 - 9.1.2, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.2_03	The acute toxicity of potassium formate to Daphnia magna. Huntington Research Centre Ltd. (HRC) (sponsored by KSEPL, Rijswijk, NL), SLL 237(f)/920574. GLP / Unpublished	Yes	FATF
	1992a	Annex II.1 - 10.1.1.2.a, Annex II.1 - 10.1.1.2.b, Annex II.1 - 10.1.3.1.a, Annex II.1 - 10.1.3.2.a, Annex II.1 - 10.1.3.2.b, Annex II.1 - 10.1.5, Annex II.1 - 10.2.1, Annex II.1 - 10.2.8, Annex II.1 - 10.2.4, Annex II.1 - 10.2.6, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex II.1 - 9.6 / BPD ID A7.1.1.2.1_03	Assessment of ready biodegradability of potassium formate (Closed Bottle Test). Huntington Research Centre Ltd. (HRC) (sponsored by KSEPL, Rijswijk, NL), SLL 237(a)/920737. GLP / Unpublished	Yes	FATF
	1992b	Annex II.1 - 9.1.3.1, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3 / BPD ID A7.4.1.3_03	Potassium formate – the algistatic activity . Huntington Research Centre Ltd. (HRC) (sponsored by KSEPL, Rijswijk, NL), SLL 237(f)/920647. GLP / Unpublished	Yes	FATF
	1992c	Annex II.1 - 9.1.2, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3 / BPD ID A7.4.1.2_04	The acute toxicity of potassium formate to brown shrimp (Crangon crangon). Huntington Research Centre Ltd. (HRC) (sponsored by KSEPL, Rijswijk, NL), SLL 217(d)/911712. GLP / Unpublished	Yes	FATF
	1992d	Annex II.1 - 9.1.1, Annex II.1 - 9.1.6, Annex II.1 - 9.1.6.1, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3 / BPD ID A7.4.1.1_04		Yes	FATF

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	1992e	Annex II.1 - 9.1.1, Annex II.1 - 9.1.6, Annex II.1 - 9.1.6.1, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex II.1 - 10.1.3.3 / BPD ID A7.4.1.1_03		Yes	FATF
	1994	Annex II.1 - 10.1.3.3 / BPD ID A7.1.1.2.3_01	The biodegradability in seawater of potassium formate liquor. Binnie Environmental Ltd. (sponsored by OSCA UK Ltd.), ENV342/109410.OUL. GLP / Unpublished	Yes	FATF
	2002	Annex II.1 - 3.2, Annex II.1 - 3.4, Annex II.1 - 3.5, Annex II.1 - 3.7, Annex II.1 - 3.9, Annex II.1 - 3.10, Annex II.1 - 10.1.1.1.a, Annex II.1 - 10.1.4, Annex II.1 - 10.2.4, Annex II.1 - 10.2.6, Annex II.1 - 9.1.7, Annex II.1 - 9.1.7, Annex II.1 - 9.6 / BPD ID A7.1.1.1.1_01		Yes	FATF
ECT Oekotoxikologie GmbH	2015	Annex II.1 - 3.7.1 / BPD ID A3_11	Henry's Law Constant calculated from water solubility and vapour pressure. ECT Oekotoxikologie GmbH, Flörsheim, Germany, non-GLP / Unpublished	Yes	FATF
Eells JT, Henry MM, Lewandowski MF, Seme MT and Murray TG		Annex II.1 - 8.7 / BPD ID A6.10_01	Development and characterization of a rodent model of methanol of methanol-induced retinal and optical nerve toxicity. Neuro Tox 21, 321-330, / Published	No	Public
EFSA	2009	Annex II.1 - 8.16, Annex III.1 - 7 / FA_BPR_Ann_II_8_16_01	Scientific Opinion on the safety and efficacy of Formi [™] LHS (potassium diformate) as a feed additive for sows. EFSA Journal 2009; 7 (9): 1315, non-GLP / Published	No	Public
EFSA	2014	Annex II.1 - 8.16, Annex III.1 - 7 / FA_BPR_Ann_II_8_16_02	Scientific Opinion on the safety and efficacy of formic acid when used as a technological additive for all animal species. EFSA Journal 2014; 12 (10): 3827, non-GLP / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
EFSA	2015	Annex II.1 - 8.16 / FA_BPR_Ann_II_8_16_03	Scientific Opinion on the safety and efficacy of formic acid, ammonium formate and sodium formate as feed hygiene agents for all animal species. EFSA Journal 13 (5): 4113, / Published	No	Public
	2016	Annex II.1 - 9.1.5 / FA_BPR_Ann_II_9_1_5_01	A study on the respiration inhibition of activated sludge according to OECD Guideline for testing of chemicals No. 209. ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany, 16EM1XA. GLP / Unpublished	Yes	FATF
	2006	Annex II.1 - 8.12.1 / BPD ID A6.12_01	Workplace exposure of Formic acid. BASF AG, non-GLP / Unpublished	Yes	FATF
	2002	Annex II.1 - 8.5.3 / BPD ID A6.6.3_01	In vitro gene mutation test with formic acid in CHO cells (HPRT locus assay) . BASF AG, Project No. 50M0102/024017, 27 June 2002. GLP / Unpublished	Yes	FATF
European Commission	2005	Annex II.1 - 8.16.1 / BPD ID A6.15.4_01a	Provisional list of monomers and additives notified to European commission as substances which may be used in the manufacture of plastics or coatings intended to come into contact with foodstuffs. European Commission, Synoptic Docum. (2005.07.25) / Published	No	Public
Exner M, Herrmann H, Zellner R	1994	Annex II.1 - 10.1.1.1.b / BPD ID A7.1.1.1.2_03	Rate constants for the reactions of the NO3 radical with HCOOH/HCOO- and CH3COOH/CH3COO- in aqueous solution between 278 and 328 K. J. Atmos Chem. 18, 359 - 378, / Published	No	Public
	2014	Annex III.1 - 4.6 / BPD ID B3.4_01	Prüfbericht: Flammpunkt nach DIN EN ISO 2719 (Study report: Flash point according to DIN EN ISO 2719). BASF SE, SIK 14/1849. non-GLP / Unpublished	Yes	BASF SE
Franco A, Fu W, Trapp S.	2009	Annex II.1 – 10.1.2 / 100000_Franco, AEnviron. Toxic_2009	Influence of the soil pH on the sorption of ionizable chemicals: modeling advances. Environ Toxicol Chem 28: 458-464, / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Gabriel R., Schäfer, L., Gerlach, C., Rausch, T. & Kesselmeier, J.	1999	CAR (ED) / -	Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak). Atmos. Environ. 33, 1347–1355, / Published	No	Public
Galloway, J. N., Likens, G. E., Keene, W. C. & Miller, J. M.	1982	CAR (ED) / -	The composition of precipitation in remote areas of the world. J. Geophys. Res. 87, 8771–8786, / Published	No	Public
	2007	Annex II.1 - 8.7.3 / BPD ID A6.1.2_01	Natriumformiat (Sodium formate). Acute dermal toxicity study in rats. 11A0123/031083. GLP / Unpublished	Yes	FATF
	2002	Annex II.1 - 8.3 / -	Formic acid - Buehler test in Guinea pigs. 32H0102/022005. non-GLP / Unpublished	Yes	FATF
GESTIS	2006	Annex II.1 - 3.11 / BPD ID A3_05	Database (Gefahrstoffinformationssystem der gewerblichen Berufsgenossenschaften). TOXNET, non-GLP / Published	No	Public
Glanville H, Rousk J, Golyshin P, and Jones DL	2012	Annex II.1 – 10.2 / -	Mineralization of low molecular weight carbon substrates in soil solution under laboratory and field conditions. Soil Biology & Biochemistry 48, 88-95., / Published	No	Public
	1998	Annex II.1 - 8.8 / BPD ID A6.2_10	Formi LHS. Pharmacokinetics after oral dosing in pigs. report No. 25280. GLP / Unpublished	Yes	FATF
	2006	Annex II.1 - 4.1, 4.13, Annex III.1 - 4.1, 4.13 / BPD ID A3_03	Expert judgement on oxidising and explosive properties of formic acid. BASF AG, GCT/S-L511. non-GLP / Unpublished	Yes	FATF
Greim H	2003	Annex II.1 - 8.12.8 / BPD ID A6.12.8_01a	Formic Acid. Occupational Toxicants Vol. 19, 169-180, / Published	No	Public
Hama T, Handa N	1981	Annex II.1 – 10.1 / -	[English title not available]. Rikusiugaku Zasshi 42: 8-19, - / Published	No	Public

Author(s)		Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Hanzlik RP et a	al.	2005	Annex II.1 - 8.8 / FA_BPR_Ann_II_8_8_10.pdf	ABSORPTION AND ELIMINATION OF FORMATE FOLLOWING ORAL ADMINISTRATION OF CALCIUM FORMATE IN FEMALE HUMAN SUBJECTS. DMD 33:282–286, / Published	No	Public
		2016	Annex III.1 - 6.7 / BPR-6.7-06	PH measurements of solutions of Protectol FM 85 in hard water; report date: 05 Apr 2016. BASF Grenzach GmbH, Germany, BIO15-014-EX. non-GLP / Unpublished	Yes	BASF SE
		2004	Annex II.1 - 8.9.1, _8.9.2, _8.9.3, ED- Assessment / BPD ID A6.4.1_02	Formi LHS: Target species safety study in the farrowing pig. , 1516/034-D6154. GLP / Unpublished	Yes	FATF
Kivimäki A Miettinen Mäkinen F	PP, AL, IT, RP, JM,	2005a	Annex II.1 – 10.1 / -	Degradation of potassium formate in the unsaturated zone of a sandy aquifer Journal of Environmental Quality 34(5), 1665-1671., / Published	No	Public
Salminen J	PP, JM, <s,< td=""><td>2005b</td><td>Annex II.1 – 10.1 / -</td><td>Use of potassium formate in road winter deicing can reduce groundwater deterioration. Environ Sci Technol 39, 5095-5100, / Published</td><td>No</td><td>Public</td></s,<>	2005b	Annex II.1 – 10.1 / -	Use of potassium formate in road winter deicing can reduce groundwater deterioration. Environ Sci Technol 39, 5095-5100, / Published	No	Public
		2016a	Annex III.1 - 3.2 / KT_BPR_Ann3_5	Determination of the acidity/alcalinity of Formic acid 85% (also known under the tradename Fennopur MH85) according to CIPAC, MT 191. Laus GmbH, Kirrweiler, Germany, 16011907G975. GLP / Unpublished	Yes	Kemira / Taminco (LoA: BASF SE)
	(also known under the tradename Fenn method 37.4 C.1 of the UN Hand	Determination of the corrosion of metals by Formic acid 85% (also known under the tradename Fennopur MH85) following method 37.4 C.1 of the UN Handbook. Laus GmbH, Kirrweiler, Germany, 16011907G979. GLP / Unpublished	Yes	Kemira / Taminco (LoA: BASF SE)		
		2016c	Annex III.1 - 3.2 / KT_BPR_Ann3_12	Determination of the pH-value of Formic acid 85% (also known under the tradename Fennopur MH85) according to CIPAC, MT 75. Laus GmbH, Kirrweiler, Germany, 16011907G907. GLP / Unpublished	Yes	Kemira / Taminco (LoA: BASF SE)

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	1997	Annex II.1 - 8.8 / BPD ID A6.2_01	The chemical behavior of Potassium Diformate in water solutions. Comparison with Formic Acid Hydro Research Centre Porsgrunn, Norway, 97B_AO5.SAM. non-GLP / Unpublished	Yes	FATF
HSDB	2006	Annex II.1 - 10.1.1.1.b, Annex II.1 - 10.3.2, ED-Assessment / BPD ID A7.1.1.1.2_04	Database extract. TOXNET, / Published	No	Public
Iannotti EL, Porter JH, Fischer JR, and Sievers M	1997	Annex II.1 – 10.2 / -	Changes in swine manure during anaerobic digestion. In: Developments in industrial microbiology. Vol. 20: Proceedings of the 35th general meeting of the Society for Industrial Microbiology held at Houston, Texas: August 14- 18, 1978. Arlington, VA, USA. Chapter 49, pp. 519-529, / Published	No	Public
Jager T 1	1998	Annex II.1 – 9.6 / FA_BPR_Ann_II_9_6	Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (Oligochaeta). Environmental Toxicology and Chemistry 17(10), 2080-2090. Cited in ECHA (2017). Guidance on Biocidal Products Regulation: Volume IV Environment - Assessment and Evaluation (Parts B+C). DoI 10.2823/033935.	No	Public
	1988	Annex II.1 - 9.1.2, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.2_01		Yes	FATF
JECFA	2003	Annex II.1 - 8.16.1 / BPD ID A6.15.4_01b	Formic acid. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives. JECFA, / Published	No	Public
Jefferys DB and Wiseman HM	1980	Annex II.1 - 8.12.2 / BPD ID A6.12.2_05	Formic acid poisoning. Postgrad. Med. J. 56, 761-763, / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2000	Annex II.1 - 10.1.1.2.a, Annex II.1 - 10.1.1.2.b, Annex II.1 - 10.1.3.1.a, Annex II.1 - 10.1.3.2.a, Annex II.1 - 10.1.3.2.b, Annex II.1 - 10.1.5, Annex II.1 - 10.2.1, Annex II.1 - 10.2.8, Annex II.1 - 10.2.4, Annex II.1 - 10.2.6, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex II.1 - 9.6, Annex III.1 - 10 / BPD ID A7.1.1.2.1_04	Biodegradability of potassium formate in water tested with OECD 310D (Closed Bottle Test). Norwegian Institute for Water Research (NIVA) (sponsored by Norsk Hydro ASA, Porsgrunn, Norway), B387/1. non-GLP / Unpublished	Yes	FATF
	2022	Annex II.1 - 8.5.1_02 / BPD ID A6.6.1_02 / FA_BPR_Ann_II_8_5_1_02	Salmonella typhimurium / Escherichia coli reverse mutation assay. BASF SE. 40M0247/14M172	Yes	FATF
Kavet R and Nauss KM	1990	Annex II.1 - 8.8 / BPD ID A6.2_12	The toxicity of inhaled methanol vapors . Crit. Rev. Toxicol. 21, 21-50, / Published	No	Public
Kawamura, K., Ng., L. L. & Kaplan, I. R.		CAR (ED) / -	Determination of organic acids (C1-C10) in the atmosphere, motor exhausts and engine oils Environ. Sci. Tech. 19, 1082–1086, / Published	No	Public
	2013	Annex II.1 - 5.1, _5.2, _5.3 / BPD ID A4.1_03	Validation of an enzymatic method for the determination of formic acid Institute Dr. Appelt, Mannheim, Germany, No. 001. non-GLP / Unpublished	Yes	FATF
19	1989	Annex II.1 - 9.1.1, Annex II.1 - 9.1.6, Annex II.1 - 9.1.6.1, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1 - 9.1 / BPD ID A7.4.1.1_01	Report on the study of the acute toxicity to golden orfe (Leuciscus idus L., golden variety) (in German).	Yes	FATF
	2003	Annex II.1 - 8.9.4, ED-Assessment / BPD ID A6.5_02	Effect of pre-mating administration of Formi LHS on ovulation/fertility of breeding sows Between the set of the set of	Yes	BASF SE (LoA: Kemira / Taminco)
	2017	Annex II.1 - 4.16 / KT_BPR_Ann2_13	Determination of the corrosion of metals by Formic acid 99% following method 37.4 C.1 of the UN Handbook. Laus GmbH, Kirrweiler, Germany, 16092902G979 / Unpublished	Yes	FATF

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Lamarre et al.	2013	CAR (ED) / -	Formate: essential metabolite, a biomarker or more?. Clin Chem Lab Med 51(3):571-578, / Published	No	Public
	2017	Annex II.1 - 5.1 / FA_BPR_Ann_II_5_1_Analytics_metho ds_active_substance.pdf	Formic acid. Validation of Analytical Methods for the Determination of the Active Substance and Water. Noack Laboratorien GmbH, Sarstedt. Germany, 16091BE/CMV 177788. GLP / Unpublished	Yes	BASF SE / Taminco BV
	2017	Annex II.1 - 5.1 / Formic acid. Validation of Analytical Methods for the Determination of the Active Substance and Water.	FA_BPR_Ann_II_5_1_Analytics_methods_active_substance	Yes	BASF SE, Taminco bvba
Lin PT and Dunn WA	2014	Annex II.1 - 8.12.2 / FA_BPR_Ann_II_8_12_2_12.pdf	Suicidal carbon monoxide poisoning by combining formic acid and sulfuric acid with a confined space. J Forensic Sci, January 2014, Vol. 59, No. 1, / Published	No	Public
Lissner H, Wehrer M, Jartun M, Totsche KU	2014	Annex II.1 – 10.2 / -	Degradation of deicing chemicals affects the natural redox system in airfield soils Environ Sci Pollut Res 21, 9036-9053. , / Published	No	Public
Makar AB, Tephly TR, Sahin G, Osweiler G	1990	Annex II.1 - 8.8 / BPD ID A6.2_08	Formate metabolism in young swine. Toxicol. Appl. Pharmacol. 105, 315-320, / Published	No	Public
Malizia E, Reale C, Pietropaoli P, and De Ritis GC	1977	Annex II.1 - 8.12.2, Annex II.1 - 8.12.2 / BPD ID A6.12.2_07a	Formic acid intoxications. Acta Pharm. Toxi.,S41342-347, - / Published	No	Public
Malorny G	1969a	Annex II.1 - 8.8, Annex II.1 - 8.7, ED- Assessment / BPD ID A6.2_06	Die akute und chronische Toxizität der Ameisensäure und ihrer Formiate. Z. Ernährungs-wiss. 9, 332-339, / Published	No	Public
Malorny G	1969b	Annex II.1 - 8.8, Annex II.1 - 8.13.2 / BPD ID A6.2_07	Stoffwechselversuche mit Natrium-formiat und Ameisensäure beim Menschen. Z. Ernährungs-wiss. 9, 340- 348, / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Martin-Amat G, McMartin, KE, Hayreh SS, Hayreh MS, Tephly TR	1978	Annex II.1 - 8.8, Annex II.1 - 8.13.2 / BPD ID A6.2_05	Methanol poisoning: Ocular toxicity produced by formate Toxicol. Appl. Pharmacol., 45, 201-208, / Published	No	Public
	2006	Annex II.1 - 10.3.2, Annex II.1 - 10.3.1 / BPD ID A7.3.1_01	Formic acid, EPI Suite v.3.12 calculations. BASF AG, Department of Product Safety, non-GLP / Unpublished	Yes	FATF
	2016	Annex III.1 - 3.4.1.3 / BPR ID 3.4.1.3_01	Interpretation of DSC-curve of study 02L00109. BASF SE, - non-GLP / Unpublished	Yes	BASF SE
Morita T, Takeda K, and Okumura K	1990	Annex II.1 - 8.5.2 / BPD ID A6.6.2_01	Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells. Mut Res 240, 195-202, / Published	No	Public
	1999	Annex II.1 - 8.4, _8.1, _8.2 / BPD ID A6.1.6_01	A sensory irritation study with Formi@ LHS in male mice V98.1244. GLP / Unpublished	Yes	FATF
	2007	Annex II.1 - 5.2.2, Annex II.1 - 5.2.2 / BPD ID A4.1_02	Method for the determination of formic acid in the air BASF AG, non-GLP / Unpublished	Yes	FATF
	1985	Annex II.1 - 8.7.1 / BPD ID A6.1.1_01	Akute orale Toxizität von Ameisensäure 99 % für Ratten. Report No. 0359. non-GLP / Unpublished	Yes	FATF
Murtaugh JJ, Bunch RL	1965	Annex II.1 – 10.1 / -	Acidic Components of Sewage Effluents and River Water. J Water Pollut Control Fed 37: 410-5, / Published	No	Public
Naik RB, Stephens WP, Wilson DJ, Walker A, and Lee HA	1980	Annex II.1 - 8.12.2 / BPD ID A6.12.2_04	Ingestion of formic acid-containing agents – report of three fatal cases. Postgrad. Med. J. 56, 451-456, / Published	No	Public
Neeb, P., Sauer, F., Horie, O. & Moortgat, G. R.	1997	CAR (ED) / -	Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapor. Atmos. Environ. 31, 1417–1423, / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2007a	Annex II.1 - 3.1.4, 3.12, Annex III.1 - 3.1.3, 3.4.2.3, 4.16 / BPD ID A3_06	Expert Judgement: Formic acid 99-100 % - materials compatibility and odor. BASF AG, E-CZS/PC. non-GLP / Unpublished	Yes	FATF
	2007b	Annex III.1 - 3.4.1.2 / BPD ID B3_02	Formic acid 85 % - Determination of storage stability. BASF AG , E-CZS/PC. non-GLP / Unpublished	Yes	BASF SE
	2007c	Annex III.1 - 3.5.1, 3.5.2, 3.5.7 / BPD ID B3_03	Technical characteristics of the biocidal product Protectol FM 85 (formic acid 85 %). BASF AG , E-CZS/PC. non-GLP / Unpublished	Yes	BASF SE
NTP-CERHR expert panel	2004	Annex II.1 - 8.8, Annex II.1 - 8.13.2 / BPD ID A6.2_04	NTP-CERHR expert panel report on the reproductive and developmental toxicity of methanol. U.S. DHHS, NTP; Reprod. Toxicol. 18: 303-390, / Published	No	Public
OECD	2007	Annex II.1 - 9.1 / BPD ID IIA4.2.1_01	SIDS Initial Assessment Report on the Ammonia Category. OECD, Paris, / Published	Yes	FATF
Page LH, Ni JQ, Heber AJ, Mosier NS, Liu X, Joo HS, Ndegwa PM, Harrrison JH	2014	Annex II.1 – 10.2 / 2014_Page LH et al_manure_anaerobic digestion	Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosystems Engineering 118: 16-28, / Published	No	Public
1	1988a	Annex II.1 - 10.1.1.2.a, Annex II.1 - 10.1.1.2.b, Annex II.1 - 10.1.3.1.a, Annex II.1 - 10.1.3.2.a, Annex II.1 - 10.1.3.2.b, Annex II.1 - 10.1.5, Annex II.1 - 10.2.1, Annex II.1 - 10.2.8, Annex II.1 - 10.2.4, Annex II.1 - 10.2.6, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex II.1 - 9.6, Annex III.1 - 10 / BPD ID A7.1.1.2.1_01	AG, Lab. of Environm. Analytics & Ecology, 0048/88. non-GLP / Unpublished	Yes	FATF

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	1988b	,	of formic acid in the Modified OECD Screening Test. BASF AG, Lab. of Environm. Analytics & Ecology, 52/0048/88. non-GLP / Unpublished	Yes	FATF
	1988c	Annex II.1 - 9.1.5, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3 / BPD ID A7.4.1.4_01, Annex III.1- 9.1 / BPD ID A7.4.1.4_01	Report on the Determination of the Respiration Activity of Activated Sludge by Formic Acid in the Short-Term Respiration Inhibition Test. BASF AG, Lab. of Environm. Analytics & Ecology, 01.0048/88. non-GLP / Unpublished	Yes	FATF
Rajan N, Rahim R, and Krishna Kumar S	1985	Annex II.1 - 8.12.2 / BPD ID A6.12.2_03	Formic acid poisoning with suicidal intent: a report of 53 cases. Postgrad. Med. J. 61, 35-36, / Published	No	Public
19	1998	Annex II.1 - 8.9.1, _8.9.2, _8.9.3, ED- Assessment / BPD ID A6.4.1_01	Formi LHS: 13 week oral (dietary administration) toxicity study in the rat with a 4 week treatment-free period. 1516/6-D6154. non-GLP / Unpublished	Yes	FATF
	2007	Annex II.1 - 3.3 / BPD ID B3_01b	Physico-chemical properties of "Ameisensäure 85%". BASF AG, GKA Competence Center Analytics, 07L00172. GLP / Unpublished	Yes	BASF SE (LoA: Kemira / Taminco)
	2007	Annex III.1 - 3.2 / BPD ID B3_01b	Physico-chemical properties of "Ameisensäure 85%". BASF AG, GKA Competence Center Analytics, 07L00172. GLP / Unpublished	Yes	BASF SE

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2021a	Annex III.1 - 6.7 / BASF_FA_efficay_2021_201202_0259_ 003 and 006_1650_CleanConditions_e_Version 01	Samples: BIO20-068-06 and BIO20-068-07: Quantitative suspension test for the evaluation of the yeasticidal activity according to EN 1650 (testing under clean conditions), Test Report (Version 01) LS-No.: 201202-0259-003 and 201202-0259-006, Bad Bocklet, 23 February, 2021, Guideline Study / Unpublished.	Yes	BASF SE
	2021b	Annex III.1 - 6.7 / BASF_FA_efficay_2021_201202_0259_ 001 and 002_1276_CleanConditions_e_Version 01	Samples: BIO20-068-06 and BIO20-068-07: Quantitative suspension test for the evaluation of the bactericidal activity according to EN 1276 (testing under clean conditions), Test Report (Version 01) LS-No.: 201202-0259-001 and 201202-0259-002, Bad Bocklet, 23 February, 2021, Guideline Study / Unpublished	Yes	BASF SE
	2018	Annex III.1 - 6.7 / 1089285_13697_Version01.pdf	Protectol FM 85 - Quantitative surface test for the evaluation of bactericidal and fungicidal efficacy according to EN 13697 - Version01; report date: 11 May 2018. Labor LS SE & Co. KG, Bad Bocklet, Germany, L+S-No. 180411-0321-001. Guideline Study / Unpublished	Yes	BASF SE
	2018	Annex III.1 - 6.7 / 1089285_1657_Version01.pdf	Protectol FM 85 - Quantitative suspension test for the evaluation of yeasticidal efficacy according to EN 1657 - Version01; report date: 11 May 2018. Labor LS SE & Co. KG, Bad Bocklet, Germany, L+S-No. 180411-0321-001. Guideline Study / Unpublished	Yes	BASF SE
	2016	Annex III.1 - 6.7 / BPR-6.7-04	Sample Protectol FM 85: Quantitative suspension test for the evaluation of the bactericidal efficacy according to EN 1656; report date: 24 Mar 2016. Labor L+S AG, Bad Bocklet, Germany, L+S 0543119. non-GLP / Unpublished	Yes	BASF SE
	2008a	Annex II.1 - 8.10.1, ED-Assessment / BPD ID A6.8.1_02	Natriumformiat (sodium formate) - Prenatal developmental toxicity study in Himalayan rabbits. Oral administration (Gavage) 40R0123/03089. GLP / Unpublished	Yes	FATF
	2008b	Annex II.1 - 8.10.2, ED-Assessment / BPD ID A6.8.2_01	Natriumformiat (Sodium formate). Two-Generation Reproduction Toxicity Study in Wistar Rats. Administration via the Diet 70R0123/03091. GLP / Unpublished	Yes	FATF

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2005	Annex II.1 - 8.10.3, ED-Assessment / BPD ID A6.8.1_01	Sodium formate - Prenatal developmental toxicity study in Wistar rats . 30R0123/03036. GLP / Unpublished	Yes	American Chemistry Council/US A
	1988	Annex II.1 - 9.1.3.1 , Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.3_01		Yes	FATF
Sigurdsson J, Björnsson A, and Gudmundsson ST	1983	Annex II.1 - 8.12.2 / BPD ID A6.12.2_08	Formic acid burn - local and systemic effects Burns 9, 358-361, / Published	No	Public
	2017	Annex II.1 - 3.3 / BASF_BPR_Ann2_1	Acidity or Alkalinity of Protectol FM 99. Eurofins, Niefern- Öschelbronn, EAS Study Code S16-06390. GLP / Unpublished	Yes	BASF SE (LoA: Kemira / Taminco)
	2017	Annex II.1 - 3.3 / BASF_BPR_Ann2_2	pH of Protectol FM 99 (aqueous dilution). Eurofins, Niefern- Öschelbronn, EAS Study Code S16-06389. GLP / Unpublished	Yes	BASF SE (LoA: Kemira / Taminco)
Spoelstra SF	1979	Annex II.1 – 10.2 / -	Volatile fatty acids in anaerobically stored piggery wastes. Neth. J. agric. Sci. 27, 60-66., / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Stavrakou, T., Muller, J. F., Peeters, J., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P., Hurtmans, D., De Maziere, M., Vigouroux, C., Deutscher, N., Griffith, D., Jones, N. & Paton-Walsh, C.	2012	CAR (ED) / -	Satellite evidence for a large source of formic acid from boreal and tropical forests. Nature Geoscience, 5 (1), 26-30, / Published	No	Public
Takata Y, Tani M, Kato T, and Koike M	2011	Annex II.1 – 10.2 / -	Effects of land use and long-term organic matter application on low-molecular-weight organic acids in an Andisol. J. Soil Sci. Manage. 2(10), 292-298, / Published	No	Public
Tete E, Viaud V, and Walter C	2015	Annex II.1 – 10.2 / -	Organic carbon and nitrogen mineralization in a poorly- drained mineral soil under transient waterlogged conditions: an incubation experiment European Journal of Soil Science, 66, 427-437., / Published	No	Public
Thompson M	1992	Annex II.1 - 8.9.1, _8.9.2, _8.9.3 / BPD ID A6.4.3_01	NTP Technical Report on Toxicity Studies of Formic Acid. administered by inhalation to F344/N rats and B6C3F1 mice. US Department of Health and Human Services . NTP US DHHS, Toxicity Report Series No: 19, NIH Publ. No: 92- 3342, July 1992 / Published	No	Public
	1991	Annex II.1 - 9.1.5, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.4_02	Bacterial Growth Inhibition Test. BASF AG, Laboratory of Ecology, 9/0290/88. non-GLP / Unpublished	Yes	FATF
Van Hees PAW, Johansson E, and Jones DL	2008	Annex II.1 – 10.2 / -	Dynamics of simple carbon compounds in two forest soils as revealed by soil solution concentrations and biodegradation kinetics Plant Soil 310, 11-23., / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
Verstraete AG, Vogelaers DP, van den Bogaerde JF, Colardyn FA, Ackerman CM and Buylaert WA	1989	Annex II.1 - 8.12.2 / BPD ID A6.12.2_02	Formic acid poisoning: Case report and in vitro study of the haemolytic activity. Am J Emerg Med 7, 286-290, / Published	No	Public
von Muehlendahl KE, Oberdisse U and Krienke EG	1978	Annex II.1 - 8.12.2 / BPD ID A6.12.2_06	Local injuries by accidental ingestion of corrosive substances by children. Arch Toxicol 39, 299-314, / Published	No	Public
	2007	Annex II.1 - 9.1.4.1, Annex II.1 - 9.1.7, Annex II.1 - 9.1.7, Annex II.1 - 9.6, Annex III.1- 10.2 / BPD ID A7.4.2_01	Formic acid, BCFWIN v.2.17 calculations. ECT Oekotoxikologie GmbH, Flörsheim, Germany, non-GLP / Unpublished	Yes	FATF
	2005	Annex II.1 - 9.1.1, Annex II.1 - 9.1.6, Annex II.1 - 9.1.6.1, Annex II.1 - 9.2.1; Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.1_02	Acute toxicity of ammonium formate to zebra fish (Danio rerio). KEM-001/4-11. GLP / Unpublished	Yes	FATF
	2005	Annex II.1 - 9.1.2, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID A7.4.1.2_02	Effect of ammonium formate on the immobilization of Daphnia magna. Fraunhofer-IME, KEM-001/4-20. GLP / Unpublished	Yes	FATF
	2005	Annex II.1 - 9.1.3.1, Annex II.1 - 9.2.1, Annex II.1 - 9.2.2, Annex II.1 - 9.2.3, Annex III.1- 9.1 / BPD ID FA. A7.4.1.3_02	Pseudokirchneriella subcapitata. Fraunhofer-IME, KEM-	Yes	FATF
	2001	Annex II.1 - 8.12.2 / BPD ID A6.12.2_01	Fatal intoxication with a decalcifying agent containing formic acid. Int. J. Legal Med. 114, 181-185, / Published	No	Public
	1999	Annex II.1 - 8.9.1, _8.9.2, _8.9.3, ED- Assessment / BPD ID A6.5_03	Formi LHS. Combined chronic toxicity and 104 week oral (dietary administration) oncogenicity study in the rat. Interim Draft study report. 1516/30-D6154. GLP / Unpublished	Yes	FATF

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2002a	Annex II.1 - 8.9.1, _8.9.2, _8.9.3, Annex II.1 - 8.11.1, ED-Assessment / BPD ID A6.5_01	Formi LHS. Combined chronic toxicity and 104 week oral (dietary administration) oncogenicity study in the rat. 1516/30-D6154. GLP / Unpublished	Yes	FATF
	2002b	Annex II.1 - 8.11.2, ED-Assessment / BPD ID A6.7_02	Formi LHS. 80 week oral (dietary administration) oncogenicity study in the mouse 1516/33-D6154. GLP / Unpublished	Yes	FATF
Yang CC et al.	2008	Annex II.1 - 8.12.2 / FA_BPR_Ann_II_8_12_2_13.pdf	Formic acid: A rare but deadly source of carbon monoxide poisoning. Clinical Toxicology, 46:4, 287-289, / Published	No	Public
Yelon JA, Simpson RL, and Gudjonsson O	1996	Annex II.1 - 8.12.2 / BPD ID A6.12.2_10	Formic acid inhalation injury: a case report J. Burn Care Rehab. 17, 241-242., / Published	No	Public
Zeiger E, Anderson B, Haworth S, Lawlor T, and Mortelmans K	1992	Annex II.1 - 8.5.1 / BPD ID A6.6.1_01	Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. Environ. Molec. Mutagen. 19, Suppl 21, 2-141, / Published	No	Public
	1980	Annex II.1 - 8.7.2 / BPD ID A6.1.3_01	Bestimmung der akuten Inhalationstoxizität LC50 von Ameisensäure als Dampf bei 4-stündiger Exposition an Sprague-Dawley Ratten. August 21, 1980, 16 pages Report No. 78/651. non-GLP / Unpublished	Yes	FATF
	1980	Annex II.1 - 8.7.2 / BPD ID A6.1.3_01EN	Complete translation of BPD ID A6.1.3_01 into English (Date of translation: Aug 16, 2007). Acute inhalation toxicity LC50 of formic acid as vapor after 4-hour exposure in Sprague- Dawley rats. Report No. 78/651; 16 pages, Non- GLP / Unpublished	Yes	FATF
Zepp RG, Hoigné J, Bader H	1987	Annex II.1 - 10.1.1.1.b / BPD ID A7.1.1.1.2_02	Nitrate-induced photooxidation of trace organic chemicals in water. Environ. Sci. Technol 21, 443-450, / Published	No	Public

Author(s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No.	Data Protection Claimed (Yes/No)	Owner
	2007	Annex II.1 - 9.1.6.2.a, Annex II.1 -	Final Report: Formic acid – Determination of the chronic effect on the reproduction of the water flea Daphnia magna STRAUS BASF AG, Experimental Toxicology and Ecology, 51E0274/073100. GLP / Unpublished		FATF

APPENDIX VI: CONFIDENTIAL INFORMATION

Please see separate document

APPENDIX VII: HUMAN HEALTH – READ-ACROSS JUSTIFICATION

