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Summary 

This report details a human health and environmental risk assessment of the use of per- 
and polyfluoroalkyl substances (PFASs) in firefighting foams and describes an assessment 
of the effectiveness, practicality, monitorability and socioeconomic impacts of different risk 
management options (RMOs), including different restriction options (ROs) under REACH, 
to address the identified risk. The work was conducted by ECHA at the request of the 
European Commission1.  

The assessment concluded that the risks to human health and the environment from the 
use of PFASs in firefighting foams in the EU are not adequately controlled and that a 
restriction under REACH is the most appropriate means to address the identified risks; a 
preferred restriction option is identified. 

The preferred restriction option would ban the placing on the market, use and export of 
PFASs in firefighting foams after use/sector-specific transitional periods. The restriction is 
estimated to reduce emissions of PFASs in the European Union by around 13 200 tonnes 
over the 30-year period following its implementation (the assessment period). The societal 
cost of implementing the restriction over the same period is estimated to be €6.8 billion2 
with an average cost of €515 per kilogram of emission avoided. Several elements 
determining the costs are uncertain and therefore the costs could be as low as €3 billion 
or as high as €17 billion. 

PFASs are a family of thousands of synthetic (i.e. man-made) chemicals that are used 
widely in the EU, including in firefighting foams. All PFASs contain at least one 
perfluorinated carbon atom (see section 1.1.1.1). A carbon-fluorine bond is one of the 
strongest chemical bonds in organic chemistry. All PFASs are very persistent in the 
environment. This is the key hazardous property common to all PFASs. Many PFASs are 
likely to persist in the environment longer than any other synthetic organic substance. 
Consequently, if releases of PFASs are not minimised, humans and other organisms will be 
exposed to progressively increasing amounts of PFASs until such levels are reached where 
effects are likely. In such an event these exposures are practically irreversible. Even if 
further releases of PFASs were immediately prevented, existing environmental stocks 
would continue to be a source of exposure for generations.  

PFASs are known to have additional hazardous properties. However, due to the 
heterogeneity of chemical structures in the PFAS class, these additional hazardous 
properties vary dependent on the molecular structure of specific PFASs. Nevertheless, most 
PFASs are mobile in water; humans and other biota cannot avoid exposure to such PFASs. 
For example, contamination of groundwater, surface water (freshwater, estuarine and 
marine) and biota with PFASs is already widespread and -specific to firefighting foams- at 
many locations with intensive use of firefighting foams. Drinking water contamination is 
already widely reported and will become ubiquitous if releases of PFASs are not minimised. 
Drinking water is very difficult and costly to treat to remove PFASs, contrary to other 
common contaminants. Plants also accumulate PFASs.  Consumption of plant material, e.g. 

 

1 https://echa.europa.eu/documents/10162/17233/request_echa_pfas_fff_en.pdf/aa089887-bc27-e642-747e-
b935809075cc?t=1601895611682 

2 Using 4% discount rate to the cost to the EU is estimated at €390 million per year during the assessment 
period. The corresponding emission reduction would be of 440 tonnes per year. 
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grains and vegetables either as roots or above ground plant parts, function as a source of 
PFASs to humans and animals.  

Some PFASs are distributed to remote areas by long-range transport processes. Some 
PFASs are gases (fluorinated gases or F-gases3). These PFASs are distributed around the 
globe once released where they contribute substantially to climate change4.  

The most thoroughly researched PFASs (so-called ‘long-chain’ PFASs) are suspected 
carcinogens, cause harm to the developing child and trigger effects at low concentrations 
in organs such as the liver or in the immune system. However, for most PFASs there are 
insufficient data to adequately assess their effects on human health and the environment 
(i.e. to demonstrate that they can be used safely). As research efforts progressed beyond 
long-chain PFASs (e.g., to shorter chain PFASs such as 6:2 FTOH) similar adverse effects 
to long chain PFASs were reported. There are also data indicating that some PFASs are 
potential endocrine disruptors. The environmental effects of some PFASs are sufficient to 
warrant classification (e.g., 6:2 FTOH). Adverse effects resulting from ‘combined exposure’ 
to complex mixtures of PFASs are likely for both humans and wildlife. However, these 
effects cannot be currently assessed quantitatively with sufficient certainty for regulatory 
purposes. 

Due to the above-mentioned hazardous properties, a quantitative risk assessment is not 
appropriate, but releases of PFASs should be minimised in accordance with paragraph 0.10 
of Annex I to REACH. 

Whilst some PFASs are already restricted in firefighting foams either in the EU or 
internationally (e.g., PFOS, PFOA, PFHxS, PFHxA and related substances) or are proposed 
for future risk management in the EU (e.g., PFHxS and PFHxA), the risks posed by the 
PFASs class in firefighting foams (also termed the PFASs universe) are not adequately 
controlled, requiring additional risk management.  

The precise identities of the PFASs currently used in firefighting foams are largely unknown 
due to manufacturer confidentiality. Industry report that they mostly belong to the C6 
chain length category (i.e., PFHxA related substances). However, substances with shorter 
chain length structures have also been used in firefighting foams5 and novel unregulated 
PFASs could theoretically be developed for use in firefighting foams in the future. 
Consequently, a restriction covering the whole PFASs class, rather than specific PFASs 
or groups of related PFASs with a common final (terminal) degradation product6, is 
appropriate to address the risks from PFASs in firefighting foams, including those arising 
from so called ‘regrettable substitution’ in the future. 

 

3 F-gases are subject to a phase-down administered by Regulation (EU) 517/2014 due to their high 
global warming potential and contribution to climate change. Hydrofluorocarbons (HFCs) are also 
subject to a global phase-down under the Montreal Protocol Kigali Amendment. 

4 See for example the IPCC 4th Assessment Report: https://unfccc.int/process-and-
meetings/transparency-and-reporting/greenhouse-gas-data/frequently-asked-questions/global-
warming-potentials-ipcc-fourth-assessment-report  

5 As per uses reported in REACH registration dossiers. 

6 Sometimes termed as an ‘arrowhead’ e.g., PFOA is the arrowhead structure for all PFOA-related 
substances. 
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Around 30 000 tonnes of firefighting foams are manufactured in the EU per year by around 
25 manufacturers. Despite previous restrictions on specific PFASs in firefighting foams, 
18 000 tonnes (60 %) of the current manufactured tonnage are PFAS-containing foams. It 
is estimated that €90 million of revenues are generated from the sales of firefighting foams, 
with 25 % of revenues assumed to be resulting from exports to non-EEA countries. Precise 
data on imports are not available but they are presumed to be in the same order of 
magnitude as the exports. 

Firefighting foams are used for extinguishing fires that involve flammable liquids (“class B 
fires”) by a variety of sectors (e.g., oil/(petro-)chemical sector, municipal fire brigades, 
marine, airport, defence and ready-for-use products). By far, the largest sector of use is 
the oil/(petro-)chemical industry (consuming 59 % of the annual tonnage). Firefighting 
foams are used both for training and in a variety of ‘live’ fire incidents, ranging from small 
fires to large tank fires. 

Alternative (fluorine-free) firefighting foams are available and have been successfully used 
in the sectors identified above. However, use of alternatives in certain specific scenarios 
(i.e., for fires in large flammable liquid storage tanks and at installations using multiple 
different flammable liquids) is not yet widespread pending the successful conclusion of 
performance tests for alternative foams and application methods for these scenarios7. 

To minimise the adverse socio-economic impacts associated with the phase out of PFAS-
containing foams, including any potential to compromise fire safety, specific transitional 
arrangements (i.e., transitional periods) should be applied for each type of use and user 
sector. During these transitional periods PFAS-containing foams may still be used. Such a 
differentiation is justified because the likelihood of emissions8 to the environment from the 
uses, as well as progress with substitution of PFAS-containing foams, is different for each 
use and user sector.  

Uses for training and testing, use by municipal fire services and use in civilian marine 
applications can be relatively quickly substituted without adverse impacts. Whereas a 
longer transition period of up to 10 years appears to be justified for certain applications 
(notably for large atmospheric storage tank fires and industries dealing with numerous 
different flammable liquids at the same site) where further testing is required to determine 
the technical feasibility of alternatives, and where potential fire-safety risks from using 
inappropriate alternatives may be higher.  

Several stakeholders requested longer transition periods (of up to 12 years) or an 
exemption for defence applications. The defence sector is a relatively small user of PFAS-
containing firefighting foams in the EU (around 6 % of volumes sold). Despite some notable 
exceptions, defence applications are able to transition to fluorine-free alternatives in a 
similar time frame as required for civilian aviation (where rapid extinguishing times are 

 

7 Alternatives to PFAS-containing foams have mostly been tested in small-scale tests as specified in technical 
standards against a limited number of flammable liquids. Fluorine-free foams behave differently to PFAS-
containing foams and show more variability in their performance. However, large-scale tests have also 
demonstrated satisfactory technical performance under certain conditions. Additional testing with other 
flammable liquids in a more complete range of fire scenarios is needed to ensure the effectiveness of fluorine-
free firefighting foams. Since large fire incidents are rare and large fire testing is costly, limited practical 
experience has been gained until now in such challenging fire scenarios. Importantly, it is not only the foam itself 
which needs to be considered, but the performance of the foam in combination with (i) the flammable liquid to 
be tackled and (ii) the foam application method (application system and application parameters). 

8 In this report the terms “emissions” and “releases” are used interchangeably. 
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also required). In a limited number of cases (such as currently ‘in service’ military ships), 
exemptions or longer transitional periods could be justified. However, these scenarios 
would appear to be relevant to only very few Member States. Therefore, a generally longer 
transition period or exemption is not considered justified. 

Longer transition periods are justified only for the most sensitive applications within the 
oil(petro-)chemical sector, i.e. those installations subject to the Seveso Directive on major 
accident hazards9. 

For all other sectors, shorter transition periods are expected to be sufficient to ensure a 
transition to PFAS-free alternatives, while having limited socio-economic consequences. 

Regarding an appropriate concentration limit for PFASs in foams and equipment that 
previously used PFAS-containing firefighting foams, stakeholder input suggests that a PFAS 
concentration of 1 ppm can be achieved using a relatively simple cleaning process and 
would avoid the majority of emissions. Lower concentration limits are achievable with more 
complex and costly cleaning processes. However, setting a lower concentration limit would 
lead to a relatively small additional reduction in PFASs emissions, compared to the overall 
reduction achieved by the restriction and is therefore less desirable from a cost-
effectiveness perspective. 

Finally, the restriction proposal includes an obligation for users to prepare ‘PFAS-foam 
management plans’ and apply best-practice risk management measures to continue to use 
PFAS-containing foams during any applicable transitional period. This obligation would 
cover, among other items, foam purchase, containment, treatment, proper disposal of 
foams and fire water run-off, as well as use of personal protective equipment. These 
measures provide a relatively effective reduction in PFASs emissions and exposure of 
workers and professionals at a relatively low cost during the transition periods over which 
PFAS-containing foams could continue to be used. 

The EU is not alone in phasing out PFASs in firefighting foams. Several US states, including 
California, New York, Washington have also done so. Various other initiatives exist also 
including some in Australia (see section 2.2.2.2). This global trend of substituting PFASs 
in firefighting foams facilities the implementation of any EU-wide restriction. 

Table 1 summarises the main restriction options (RO) assessed, their emission reduction 
potential, cost and cost effectiveness. Recognising the uncertainties in the results, they are 
considered to provide robust order of magnitude estimates, and to describe the differences 
between different ROs. The different RO are described and analysed in Section 2.2, 
including some which have been considered but not assessed in detail.  

Table 1. Summary of main restriction option (RO) assessed, their emission 
reduction potential, cost and cost effectiveness 

Restriction option 

Emission 
reduction 
(tonnes 
over 30 
years) 

Cost to 
society 
(€billion over 
30 years) 

Cost- 
effectiveness 
(€/kg avoided 
emission) 

1 
Restriction on the placing on the market but 
use continued to be allowed until expiry date 
of the stocks 

11 800 5.9  500 

 

9 Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-
accident hazards involving dangerous substances 
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Restriction option 

Emission 
reduction 
(tonnes 
over 30 
years) 

Cost to 
society 
(€billion over 
30 years) 

Cost- 
effectiveness 
(€/kg avoided 
emission) 

2 
Restriction on the placing on the market and 
use after use/sector-specific transitional 
periods 

13 000 6.8  520 

3[1] 
Restriction on the export, placing on the 
market and use after use/sector-specific 
transitional periods 

13 200 6.8  520 

4 

Restriction on the placing on the market and 
use after use/sector-specific transitional 
periods, with a derogation mechanism via a 
permit system to which only Seveso 
establishments and defence sites would be 
eligible 

12 600 5.2  415 

5 

Restriction on the placing on the market and 
use for all uses after sector or use-specific 
transitional periods, unless adequate risk 
management measures are in place to 
capture all the emissions to the environment 

12 500 15.0  1 200 

Notes: 1 - Option #3 is the Dossier Submitter’s preferred restriction option 

The Dossier Submitter proposes restriction option 3 as most appropriate EU-wide measure 
to address the identified risks from the use of PFASs in firefighting foams. The restriction 
option is specified in detail below “Proposed restriction”. Restriction options 4 and 5 are 
not considered to be practical as explained in Section 2.7. 

Proposed restriction 

Restriction on the export, placing on the market and use of PFASs in firefighting foams. 

Column 1 Column 2 

Per- and polyfluoroalkyl 
substances (PFASs) defined 
as: any substance that 
contains at least one fully 
fluorinated methyl (CF3) or 
methylene (CF2) carbon 
atom (without any 
H/Cl/Br/I attached to it). 

[The ancillary requirement 
in paragraph  7 of column 2 
of this entry applies to all 
firefighting foams, whether 
or not they contain a 
substance falling within this 
column of this entry.] 
 

1. Shall not be placed on the market or exported as 
substances on their own, as a constituent in other 
substances or in mixtures for use in firefighting foam 
concentrates where the concentration of total PFASs is 
greater than 1 ppm10 10 years after entry into force. 

2. Shall not be used on their own, as a constituent in 
other substances or in mixtures in firefighting foam 
concentrates where the concentration of total PFASs 
is greater than 1 ppm. 

3. Paragraph 2 shall apply from: 

a. 18 months after entry into force for training 
and testing (except testing of the firefighting 
systems for their function); 

b. 18 months after entry into force for municipal 
fire services (except if also in charge of 

 

10 Corresponding to 1 000 ppb, or 0.0001% (w/v). 
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Column 1 Column 2 

industrial fires for establishments covered by 
Directive 2012/18/EU (Seveso III) and for 
use in these establishments only); 

c. three years after entry into force for civilian 
ships;  

d. five years after entry into force for portable 
fire extinguishers as defined by EN3-7; 

e. 10 years after entry into force for 
establishments covered by the Directive 
2012/18/EU (Seveso III)11 (upper and lower 
tiers); 

f. five years after entry into force for all other 
uses not covered by paragraphs 3(a), 3(b) 
3(c), 3(d) and 3(e). 

4. Without prejudice to paragraph 3, six months after 
entry into force users of firefighting foam 
concentrates where the concentration of total 
PFASs is greater than 1 ppm shall: 

a. ensure that firefighting foam concentrates are 
only used for fires involving flammable liquids 
(class B fires);  

b. minimise emissions to the environment and 
direct and indirect exposures to humans of 
firefighting foams to the extent that is 
technically and economically feasible.  

c. establish a site-specific ‘PFAS-containing 
firefighting foams management plan’ which 
shall include: 

i. a justification for the use of each 
firefighting foam concentrate where the 
concentration of total PFASs is greater 
than 1 ppm (including an assessment of 
the technical and economic feasibility of 
alternatives). 

ii. details of the conditions of use and 
disposal of each PFASs containing foam 
used on site specifying how paragraph 
4(b) is achieved (including plans for the 
containment, treatment and 
appropriate disposal of liquid and solid 
wastes arising in the event of foam use, 

 

11 Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-
accident hazards involving dangerous substances. 
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Column 1 Column 2 

routine cleaning and maintenance of 
equipment or in the event of accidental 
leakage/spillage of foam).  

iii. The management plan shall be reviewed 
at least annually and be kept available 
for inspection by enforcement 
authorities on request. 

d. Ensure that the collected PFAS-containing 
waste with a concentration of PFASs above 
the one mentioned in paragraph 2 shall be 
handled for adequate treatment. The 
treatment shall minimise releases of PFASs to 
environmental compartments as far as 
technically and practically possible and shall 
exclude municipal wastewater treatment, 
irrespective of any pre-treatment. For each 
event of foam use or accidental spillage or 
leakage, proof of appropriate management 
and disposal of the foam concentrates, water-
added foams and fire run-off waters shall be 
documented and kept available for 
enforcement authorities. 

5. From six month after entry into force, firefighting 
foam concentrates containing PFASs above the 
threshold indicated in paragraph 1 which are held 
in stock and need to be disposed of shall be handled 
for adequate treatment. The treatment shall 
minimise releases of PFASs to environmental 
compartments as far as technically and practically 
possible and excluding any wastewater treatment, 
irrespective of any pre-treatment. Proof of 
appropriate disposal shall be documented and kept 
available for enforcement authorities. 

6. From six months after entry into force, packaging 
of firefighting foam concentrates placed on the 
market or used, containers of firewater runoffs or 
other PFAS-waste in relation with the use of 
firefighting foams or the cleaning of firefighting 
foam equipment in concentrations above the one 
mentioned in paragraph 1 shall be labelled 
indicating the presence of PFASs above this 
threshold with the following wording: “WARNING: 
Contains per- and polyfluoroalkyl substances 
(PFASs)”. This information shall be displayed in a 
clear and visible manner in the official language(s) 
of the Member State(s) where the firefighting foam 
concentrate is placed on the market, unless the 
Member State(s) concerned provide(s) otherwise. 
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Column 1 Column 2 

7. [From six months after entry into force, packaging 
of firefighting foam concentrates placed on the 
market containing organofluorine substances 
above 1 ppm, but where the concentration of total 
PFASs is not greater than 1 ppm, shall be labelled: 
“Contains non-PFAS organofluorine substances 
with a total organofluorine concentration of (insert 
concentration) ppm”. This information shall be 
displayed in a clear and visible manner in the official 
language(s) of the Member State(s) where the 
firefighting foam concentrate is placed on the 
market, unless the Member State(s) concerned 
provide(s) otherwise.] 

 

Explanatory notes:  

(1) “Testing of the firefighting systems for their function” means testing the fire protection 
system in the same way as it would operate in case of emergency. Other types of 
testing include but are not limited to: testing of foam agents during their development 
phase, testing of foam agents by users to evaluate products’ suitability on specific 
combustibles, testing of correct proportioning of firefighting foam concentrates. 

(2) Municipal fire services (i.e. local authority fire and rescue services) are covered under 
the restriction entry 3 (b.), except if they are also in charge of industrial fires for 
establishments covered by the Seveso-III Directive and for use in these establishments 
only. In this case, the transitional period of paragraph 3(e) applies. 

(3) Other uses of firefighting foams include – but are not limited to -: civilian aviation, 
defence, aerospace, offshore oil/gas/chemical facilities, onshore oil/gas/chemical 
manufacturing or processing facilities which are not coved by paragraph a. (Seveso 
establishments), power plants, glass manufacturers, waste treatment facilities, food 
processing industry, metal processing, etc. 

(4) The use of PFASs-containing foam agents in portable fire extinguishers are covered by 
paragraph 3(d), with a proposed transitional period of five years, irrespective of the 
sector of use, i.e. their use would be continued to be allowed during this period even 
if the sector where they are used is subject to a shorter transitional periods (e.g. 
ships). 

(5) “Civilian ships” refers to marine and non-marine civilian ships. 

(6) Foam concentrates are the foam formulations purchased by the users and which are 
further mixed with water at the moment of the use. Water-added foams are the foam 
concentrates mixed with water at the moment of the use. Fire run-off waters (or 
“firewater runoff”) are the run-off waters containing the firefighting foam concentrate 
mixed with water and all other elements mixed with them during the use of the 
firefighting foam during a fire incident, training or other use (e.g. flammable liquids, 
dirt, etc). 

(7) The labelling of the containers containing PFASs above the threshold indicated in 
paragraph 1 aims at facilitating the identification and handling of the PFAS-containing 
foam concentrates, firewater runoff and waste. 

(8) Placing on the market after 10 years is banned as the use is not allowed in any of the 
sectors or uses anymore at that time. 

(9) The ancillary requirement detailed in paragraph 7 is intended to facilitate the 
enforcement of the proposed restriction by means of ‘total fluorine’ analytical methods, 
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rather than targeted analysis of specific PFAS. The utility of this requirement shall be 
reviewed after the consultation on the Annex XV report.
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1. Problem identification 

PFASs are a family of thousands of synthetic chemicals that are used widely in the EU, 
including in firefighting foams. All PFASs are very persistent in the environment. 
Consequently, if releases of PFASs are not minimised, humans and other organisms will be 
exposed to progressively increasing amounts of PFASs until such levels are reached where 
effects are likely. In such an event these exposures are practically irreversible.  

Most PFASs are mobile in water; humans and other biota cannot avoid exposure to such 
PFASs. For example, contamination of groundwater, surface water (freshwater, estuarine and 
marine) and biota with PFASs is already widespread and -specific to firefighting foams- at 
many locations with intensive use of firefighting foams. Drinking water contamination is 
already widely reported and it is very difficult and costly to treat to remove PFASs. Plants also 
accumulate PFASs.  Consumption of plant material, e.g. grains and vegetables either as roots 
or above ground plant parts, function as a source of PFASs to humans and animals.  

Some PFASs are distributed to remote areas by long-range transport processes. Some PFASs 
are gases (fluorinated gases or F-gases). These PFASs are distributed around the globe once 
released where they contribute substantially to climate change.  

The most thoroughly researched PFASs (so-called ‘long-chain’ PFASs) are suspected 
carcinogens, cause harm to the developing child and trigger effects at low concentrations in 
organs such as the liver or in the immune system. However, for most PFASs there are 
insufficient data to adequately assess their effects on human health and the environment. As 
research efforts progressed beyond long-chain PFASs similar adverse effects to long chain 
PFASs were reported. There are also data indicating that some PFASs are potential endocrine 
disruptors. The environmental effects of some PFASs are sufficient to warrant classification 
(e.g., 6:2 FTOH). Adverse effects resulting from ‘combined exposure’ to complex mixtures of 
PFASs are likely for both humans and wildlife. However, these effects cannot be currently 
assessed quantitatively with sufficient certainty for regulatory purposes.  

This chapter defines per- and polyfluoroalkyl substances (PFASs) and presents a human 
health and environmental hazard and risk assessment of the use of per- and polyfluoroalkyl 
substances (PFASs) in firefighting foams. 

1.1. Hazard, exposure/emissions and risk 

1.1.1. Identity of the substance(s), and physical and chemical properties 

1.1.1.1. Substance identity restriction scope 

For the purpose of this restriction proposal, PFASs are defined as substances that contain at 
least one fully fluorinated methyl (CF3-) or methylene (-CF2-) carbon atom, without any 
H/Cl/Br/I attached to it. This definition is equal to the OECD definition, derived in 2021, which 
reads as: “PFASs are defined as fluorinated substances that contain at least one fully 
fluorinated methyl or methylene carbon atom (without any H/Cl/Br/I atom attached to it), i.e. 
with a few exceptions, any chemical with at least a perfluorinated methyl group (–CF3) or a 
perfluorinated methylene group (–CF2–) is a PFAS.” (OECD, 2021b).   

For the purpose of the Annex XVII restriction entry, we propose to use the following phrasing:  
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Per- and polyfluoroalkyl substances (PFASs) defined as:  

Any substance that contains at least one fully fluorinated methyl (CF3) or 
methylene (CF2) carbon atom (without any H/Cl/Br/I attached to it). 

This restriction proposal covers all substances containing PFASs as defined above as a 
constituent (including as impurity or additive)12 as well as in mixtures.  

The substance scope includes PFASs (as defined above) irrespective of their market status. 
Hence substances on the EU market and other than those currently on the EU market are 
included to avoid regrettable substitution to substances that would have the same identified 
risks. Some of the substances in the scope, which are neither registered under REACH or CLP-
notified, may be or may have been on the market outside of the EU. The substance scope 
also includes theoretical substances that are likely never to have been on the market.  

Figure 1 shows the main PFASs subgroups as defined by (OECD, 2021b)

 

12 As defined in the ECHA Guidance for identification and naming of substances under REACH and CLP (May, 2017, Version 
2.1). 
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Figure 1. Main PFASs subgroups, including the subgroup of stable substances (PFAAs) or ‘arrowheads’ and the precursors to the PFAAs. 
Figure adapted from OECD (2021b) – see figure 9 therein for more details on the grouping and nomenclature. The terms ‘arrowhead’ 
and ‘precursor’ are described in Section 1.1.2. 

Text       Polymeric PFASs 
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PFASs are a large group of organic chemicals that have been used since the 1950s, i.e., as 
ingredients for or intermediates of surfactants and surface protectors for assorted industrial 
and consumer applications. PFASs used in firefighting foams are discussed in section 
1.1.1.2. 

In perfluoroalkyl substances all C-H bonds have been replaced by C-F, while in 
polyfluoroalkyl substances one or more C-H bond(s) have been replaced by C-F but some 
C-H bonds still remain in the molecular structure. Polyfluoroalkyl substances containing at 
least one perfluorinated moiety are included in the scope of the proposal. 

PFASs can be divided into subgroups in several ways. Figure 1 provides one way to 
differentiate, where the subgrouping is based on main chemical moieties present. Further 
ways to differentiate are for example carbon chain length and non-polymeric vs polymeric 
structures. The non-polymeric PFASs comprise a range of diverse molecules and include, 
inter alia, perfluoroalkyl carboxylic acids (PFCAs e.g., PFOA), perfluoroalkane sulfonic acids 
(PFSAs e.g., PFOS)13, fluorotelomer-based compounds (e.g., 6:2 FTOH), per- and 
polyfluoroalkanes (e.g., perfluorooctance), perfluorotrialkylamines and per- and 
polyfluoroalkyl ether compounds, such as perfluoroalkyl ether carboxylic acids (PFECAs, 
e.g., HFPO-DA). Within the polymeric PFAS group, fluoropolymers (polymers consisting of 
a polymeric fluorinated carbon backbone) and side-chain fluorinated polymers (polymers 
consisting of non-fluorinated polymer backbones with per- or polyfluoroalkyl side-chains 
attached) are differentiated from one another. Please, see section B.1.1 for examples of 
these groups.  

A distinct PFASs subgroup are the trifluoroacetic acid (TFA) precursors. They are a special 
subclass of PFASs often containing only a single –CF3 group. Most of these occur – in 
addition to TFA itself- in gaseous form. Such fluorinated gases or “F-gases” are treated as 
a distinct group in this report due to their distinct properties. 

A recent study by the OECD/UNEP Global PFC Group identified 4 730 CAS-numbers 
associated with individual PFASs or PFASs mixtures (OECD/UNEP, 2018). A comparison of 
REACH registered and/or CLP notified PFASs in 2019 with the OCED/UNEP list revealed that 
there may be more than 9 000 different individual PFASs. Of these, 6 257 were notified 
only to the ECHA classification and labelling database and there were 508 substances with 
active registrations, 257 of these were full and the remainder intermediate. In addition, 
The US EPA have assembled a consolidated ‘master list’ of 6 330 PFASs by combining 
information from several existing lists (U.S. EPA, 2020). 

The scope of the proposed restriction is harmonised with the OECD definition (OECD, 
2021b) for practical reasons. The OECD definition of PFASs is based solely on chemical 
structure and does not take into account hazardous properties or risks. Irrespective of this, 
as described in Section 0, the substance scope is considered to be a concern -based scope 
(with the exception of the excluded substances. For these no rationale was presented by 
OECD for their exclusion and these have not been elaborated in this report either). 

 

13 A frequently used division is based on alkyl chain length where perfluoroalkyl carboxylic acids (PFCAs) with seven or more 
perfluorinated carbons and PFSAs with six or more perfluorinated carbons are considered as “long-chain” PFCAs and PFSAs, 
respectively, and those with shorter perfluoroalkyl chains “short-chain” PFCAs and PFSAs (OECD, 2021). It is noted that this 
definition has not been extended to other PFAAs nor to other PFASs. In this document, alkyl chain length of PFCAs and 
PFSAs is indicated as C[number of carbons].  
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1.1.1.2. Overview of PFASs used in firefighting foams 

Long-chain PFASs were used as surfactants specifically because of their potent water and 
oil repellence at low concentrations . However, short-chain PFASs are nowadays used due 
to the phase out of long-chain PFASs.  

Firefighting foam concentrates usually contain general classes of compounds, such as 
surfactants, solvents, stabilisers and thickeners. However, each foam formulation is unique 
and even foams with the same name differ over time in the combination of specific 
ingredients. 

The main function of PFASs in firefighting foams is to act as a surfactant, that is to form a 
film over the surface of a burning liquid in order to prevent flammable gases from being 
released from it as well as from reigniting.  

Different types of PFAS-containing foams are available on the market, mainly:  

 “Aqueous Film Forming Foam” (AFFF) which form an aqueous film on the surface of 
the flammable liquid by the foam solution as it drains from the foam blanket;  

 “Alcohol Resistant-Aqueous Film Forming Foam” (AR-AFFF) which are resistant to 
polar solvent and alcohol liquids;  

 “Fluoro Protein” foams (FP) and  
 “Film Forming Fluoro-Protein” foams (FFFP)14 .  

However, other types of PFAS-containing foams also exist, such as “Alcohol-Resistant Film-
Forming Fluoro-Protein” foams (AR-FFFP) and “Fluoro-Protein Alcohol-Resistant” foams 
(FPAR)15. 

Thanks to their properties, PFAS-containing foams are therefore used in fires involving 
flammable liquids (Class B fires16) across a range of sectors. The quantities of foam used 
by different sectors are discussed in section 1.1.5 and annex A.2.2. PFAS-containing 
firefighting foams are used for fires in many different applications involving flammable 
liquids and are used in equipment ranging from small fire extinguishers up to large tank 
fires. They can be applied with both mobile and stationary equipment and are also used in 
training and testing of equipment. 

Firefighting foams are made up of water, air and a foam concentrate mixed together during 
use.  

ECHA’s substance database was searched for structures covered by the substance scope 
of this proposal. A large number of highly diverse PFASs substances were identified as 
potentially being used in firefighting foams with carbon chain length from C2 to ≥C8. No 
PFAS-substance with only a single -CF3 moiety has been identified for this use. Briefly, 
PFASs classes found to be used in firefighting are: 

 

14 https://www.chemguard.com/about-us/documents-library/foam-info/general.htm  
15 https://pfas-1.itrcweb.org/3-firefighting-foams/#3_1  
16 The European Standard Classification of Fires distinguishes between the following fires: 
Class A – fires involving combustible solid materials (e.g. wood, paper or textiles); 
Class B - fires involving flammable liquids (e.g. petrol, diesel or oils); 
Class C - fires involving gases; 
Class D - fires involving metals; 
Class K - fires involving live electrical apparatus; 
Class F - fires involving cooking oils. 
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 Unsubstituted long-chain PFASs  

 Unsubstituted short-chain PFASs  

 Substituted short- and long-chain PFASs   

 Fluorotelomers  

 Others  

See Annex B.1.1 for details on the PFASs used in firefighting foams. 

According to the European Committee of the Manufacturers of Fire Protection Equipment 
and Fire Fighting Vehicles (Eurofeu) as well as the US association Fire Fighting Foam 
Coalition (FCCC), PFASs used in firefighting foam technology in the EU are presently 
exclusively of PFHxS, PFHxA and related substances. FFFC further indicates that PFASs 
based on <C6-chemistry have never been used as an active ingredient for firefighting 
foams as the chemistry is not suitable. These would be unintended by-products of the 
synthesis process (telomerisation process). 

Eurofeu further commented that PFOS, PFOA and related substances-based foams are 
solely legacy foams and that there has been no use of C8 beyond impurities in the C6‐

surfactant production since 2010. Eurofeu has not received any information about fluoro-
compounds with chain lengths of less than C6 being used in firefighting foam technology 
today. According to the information received by their members, sales for fluorine-
containing foams for aviation and municipal fire brigades applications are declining rapidly 
(Eurofeu, 2021). 

1.1.2. Justification for grouping  

PFASs are considered as a group because all members of the group share a common hazard 
and risk (described in Sections 1.1.4 and 1.1.6). This is, in essence, the result of the very 
persistent property of the perfluorinated part(s) of PFASs molecules. 

Specific PFASs have previously been assessed (and in some cases have been subject to 
risk management) on the basis of the PFASs moieties that they contain (see section B.1.4). 
For example, PFOA is a very persistent (vP) substance that is the common final (terminal) 
product of the environmental (bio)degradation of various different PFASs which all contain 
the perfluorooctanoate moiety. PFASs have been allocated to subgroups based on their 
respective  terminal degradation product (respective common perfluorinated moiety) (see 
Figure 1). The terminal degradation products are often referred to as arrowhead 
substances, while the parent substances degrading to the arrowheads are referred to as 
precursors (e.g., 6:2 FTOH is a precursor of PFHxA). Term related substance(s) is used 
interchangeably with the term precursor. Over sufficient time horizons all precursor 
substances will contribute to environmental stocks of their corresponding arrowhead 
substances (see Section 1.1.4 for further details). This grouping approach is acknowledged 
as a basis for risk assessment also by several scientists (see, e.g., Cousins et al., 2020a). 

Based on the experience with European regulatory activities on PFASs since 2014, it is 
expected that PFASs restricted individually or per arrowhead group (e.g., PFOA and related 
substances) might simply be replaced with slightly different non-restricted PFASs (e.g., 
ADONA or HFPO-DA) with the same risks. This observation provides the main motivation 
to include all PFASs having equivalent hazard and risk in a single restriction, to avoid 
regrettable substitution by other PFASs. 
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Some PFASs included in the scope of the proposed restriction may have a negligible or 
indeed no current use. However, such PFASs would need to be included in the scope, either 
because their use may increase as a result of becoming an alternative for another, 
restricted PFASs, or due to new uses/applications.  

To summarise, the grouping is based on structural similarity (common perfluorinated 
moieties) that triggers equivalent hazards and risks among the substances covered, 
primarily related to the very persistent property of the substances. However, the grouping 
is also justified by the desire to avoid regrettable substitution and prevention of future 
exposures of those PFASs which are not currently in use.  

It is noted that there are various other fluorinated substances on the market which appear 
related to PFASs and which may have similar hazards. These are further discussed in 
section B.1.1. 

1.1.3. Classification and labelling 

Over 6 000 PFASs have a classification (mostly a self-classification) for at least one 
environmental, human health and/or physicochemical endpoint in the ECHA classification 
and labelling notifications database. 

The following human health endpoints are considered of most concern following long-term 
exposure of humans: carcinogenicity (C), mutagenicity (M), reproductive toxicity (R) 
including lactation effects (L), and specific target organ toxicity (STOT RE). 388 PFASs have 
a classification for at least one of these five endpoints, of which 44 are harmonised 
classifications. See Annex B.3 for more information. Note that it was not assessed whether 
the effects leading to the classification are due to the PFAS-moieties or due to some other 
structures in the substance. 

With regard to the environmental hazards, 1 129 PFASs have a self-classification. For more 
detail see Annex B.3. 

1.1.4. Hazard assessment  

1.1.4.1. Overview  

PFASs is a broad term used to cover approximately 4 700 specific chemical species17 which 
have a wide range of uses. These uses are principally based around the carbon-fluorine 
bond which is particularly strong and offers physical properties that include high water and 
oil repellence18. The same properties mean that many PFASs substances are also highly 
mobile (within the natural environment) and highly persistent (see below the sections on 
hazard assessment, and Appendix 3 of the underlying study19). This can create issues 
where PFASs substances emitted to the environment reach and contaminate important 

 

17 OECD, 2018, PFAS database, toward a new comprehensive global database of per and polyfluoroalkyl 
substances. 
18 Buck et al, 2011, ‘Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, 
classification and origins’, Integrated environmental assessment and management vol 7 issue 4. 
19 Wood, Ramboll, COWI: “The use of PFAS and fluorine-free alternatives in fire-fighting foams - Final report”. 
Report for the European Commission DG Environment and European Chemicals Agency (ECHA) under specific 
contracts No 07.0203/2018/791749/ENV.B.2 and ECHA/2018/561. 
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resources such as groundwater, on which abundant literature is available, including from 
the use of firefighting foams20.  

The Nordic Council of Ministers21 indicates that the contamination may be poorly reversible 
or even irreversible, and may reach levels that could render natural resources such as soil 
and water unusable far into the future, resulting in continuous exposure and unavoidable 
harmful health effects, particularly for vulnerable populations, such as children. The 
example of PFOS in firefighting foams applied during the explosion in 2005 of the 
Buncefield oil storage facility is cited, which contaminated an aquifer that is an important 
public drinking water source for the Greater London area, so that it is no longer available 
as a water supply. 

There is evidence to suggest that exposure to PFASs can lead to adverse health effects in 
humans (by eating or drinking food or water contaminated by PFASs). In particular the US 
EPA22 highlight studies that indicate the long-chain (chain length of 8 or more) species 
PFOS and PFOA can cause reproductive and developmental, liver and kidney, and 
immunological effects on laboratory animals. Furthermore, both chemicals have caused 
tumours in animal studies. Their use is already restricted in the EU and elsewhere. Some 
short-chain PFASs (PFHxS, PFBS, HFPO-DA) have also been listed as SVHCs, based on 
there being an equivalent level of concern to the named groups of chemicals under the 
authorisation provisions under REACH (carcinogens, mutagens and reprotoxicants (CMRs) 
and persistent, bioaccumulative and toxic/very persistent and very bioaccumulative 
(PBTs/vPvBs) chemicals). 

The Nordic Council of Ministers23 commented that the annual health-impacts within an EEA 
exposure study (from all uses of PFASs, not only firefighting foams) was estimated at €52-
84 billion. This gives an indication of the scale of the issue and magnitude of the potential 
impacts from the environmental build-up of PFASs. The same study describes remediation 
costs associated with contamination from PFASs at European sites ranging from several 
hundred thousand up to €40 million with one high-cost example for the Dusseldorf Airport, 
Germany estimating a total remediation cost of up to €100 million. 

Based on the physical properties of PFASs (particularly mobility and persistence) along 
with identified health effects for some PFASs, PFASs represent a challenging environmental 
and human health hazard issue. 

 

20 See e.g.  

 Dauchy et al., 2017, Per- and polyfluoroalkyl substances in firefighting foam concentrates and water 
samples collected near sites impacted by the use of these foams, Chemosphere, Vol. 183, 2017, Pages 
53-61, https://doi.org/10.1016/j.chemosphere.2017.05.056. 

 EFSA, 2012. Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA J. 10, 
2743. Available at: https://www.efsa.europa.eu/efsajournal/pub/2743;  

 Hu et al. 2016 Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked 
to Industrial Sites, Defence Fire Training Areas, and Wastewater Treatment Plants, Environ. Sci. 
Technol. Lett. 2016, 3, 10, 344–350;  

 Hurley et al, 2016 Preliminary Associations between the Detection of Perfluoroalkyl Acids (PFAAs) in 
Drinking Water and Serum Concentrations in a Sample of California Women, Environ. Sci. Technol. 
Lett. 2016, 3, 7, 264–269;  

 Ingelido et al, 2018, Environment International, Volume 110, January 2018, Pages 149-159 
21 Nordic Council of Ministers, 2019, ‘The Cost of Inaction – A socioeconomic analysis of environmental and health 
impacts linked to exposure to PFAS’, http://norden.diva-portal.org/smash/get/diva2:1295959/FULLTEXT01.pdf 
22 US EPA, 2019, ‘Basic information on PFAS’, https://www.epa.gov/pfas/basic-information-pfas 
23 Nordic Council of Ministers, 2019, ‘The Cost of Inaction – A socioeconomic analysis of environmental and health 
impacts linked to exposure to PFAS’, http://norden.diva-portal.org/smash/get/diva2:1295959/FULLTEXT01.pdf 
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All PFASs are considered to be very persistent, either on the basis of their own very 
persistent properties or the very persistent properties of their terminal degradation product 
(arrowhead). Additional hazardous properties depend on the specific structure of a PFAS. 
Properties of concern identified in investigated PFASs as well as concerns resulting from 
specific combinations of properties are listed in Figure 2 and further described below. 

 

Figure 2. PFAS properties and property-related concerns resulting from 
combinations of the properties. 
 

1.1.4.2. Persistence 

As detailed in Annex B.4.1., PFASs are among the most stable organic compounds. 
Common for all the PFASs is that they have perfluoroalkyl moieties present. These moieties 
resist environmental and metabolic degradation due to the very stable C-F bonds. As 
presented in  

Figure 1 and introduced in section Error! Reference source not found., PFASs can be 
divided with regard to the hazard assessment into “precursors” and “arrowheads”. The 
precursors are known or expected based on modelling to degrade on a timescale from 
hours to years to the arrowheads, such as PFCAs, PFECAs and PFSAs. There is a common 
understanding about grouping PFASs according to their stable degradation end-products 
(e.g., Cousins et al., 2020b).   

After gradual degradation of the non-fluorinated part, the degradation stops when only 
perfluorinated carbons, and in some cases other moieties at their highest oxidation state 
and with high persistence, are left in the substance (see more in Annex B.4.1).  

Properties 

Very high 
persistence 

Long-range 
transport 
potential 

Mobility 

Accumulation to 
plants 

Bioaccumulation 
potential 

Endocrine 
activity 

Ecotoxicity 

Effects to human 
health 

Concerns related to combinations of properties 

High potential for ubiquitous, increasing and irreversible 
exposures of the environment and humans; 

Difficulty to decontaminate raw water for drinking water, 
low effectiveness of end-of-pipe RMMs and difficulty to 
treat contaminated sites; 

High potential for human exposure via food and drinking 
water; 

Potential for intergenerational effects and delay of effects;  

Potential for causing serious effects although those would 
not be observed in standard tests; 

Estimation of future exposure levels and safe 
concentration limits is highly uncertain; 

Global warming potential.  
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Environmental degradation of the non-fluorinated moieties in PFAS precursors often leads 
to the formation of PFAS intermediate and ultimate degradation products with increased 
mobility in water and/or air via oxidative chemical and biochemical degradation processes 
in the environment. See description of the precursor degradation in Annex B.4.1.3. 

Lifetimes of the arrowhead PFASs in the environment exceed the criteria for very persistent 
substances in Annex XIII to REACH by far. For example, PFAAs are key arrowheads in the 
environment, and if PFAAs degrade, they do it so slowly that it is not observable in standard 
tests.  

The high persistence of PFASs is their main concern, for the following reasons: 

The continuous use and release of these very persistent substances leads to sustained 
exposure and increasing stocks in the environment. The high persistence in the 
environment will lead, inevitably, after release to distribution of PFASs from one 
environmental compartment to another e.g., from soil to freshwater to marine 
environment). Even if releases of PFASs are minimised now, PFASs will remain in the 
environment for very long time (see further details in section B.4.1). Furthermore, the 
combined historic releases of precursor PFASs form arrowhead PFASs over time. Therefore, 
the precursor stocks in the environment represent a long-term source of arrowhead 
substances, even if the releases of precursors are stopped. The longer the stock is allowed 
to increase, the less effective the emission reduction will become.  

The increasing stock pollution will result in increasing likelihood that known and unknown 
effects occur, be it by a single chemical and/or in a mixture with other substances (e.g. 
Bil 2021).  

The persistence as the core concern of PFASs has also been pointed out by scientists for 
instance in the Helsingør Statement on PFASs (Scheringer et al., 2014) as well as the follow 
up Madrid statement (Blum et al., 2015). (Cousins et al., 2019) suggested to regulate 
PFASs on the basis of their very high persistence only and has named this the “P-sufficient 
approach” to regulatory action. Persistence alone was the justification for the regulation of 
PFASs as a class in California (Balan et al., 2021). 

Further papers have discussed the role of persistence in decision making as the most 
important criterion  or only property to justify regulation (Stephenson, 1977; Klöpffer, 
1994; Mackay, D. 2014 Persson et al., 2013). See also section B.4.1.3. 

1.1.4.3. Long range transport potential (LRTP) 

The LRTP is assessed and discussed in section B.4.2.5. PFASs may concentrate in the 
respective compartment into which PFASs partition according to their specific properties 
(e.g., water-soluble substances concentrate in water, while volatile substances partition to 
air). PFASs can be transported by air, water and matrices to which they are adsorbed or 
absorbed, such as dust, sediments, migratory animals, or through matrices in which it is 
included as additive, e.g. polymers. Because of non-degradability, the movement of their 
carriers leads to global drift of PFASs over long distances from the point of release. 
Calculated characteristic travel distances (CTD) of FTOHs and PFCAs reach thousands of 
kilometres in air and water. For volatile PFASs, such as FTOH, the long-range transport 
route is expected to change from LRTP via air to water when the substances degrade to 
their corresponding arrowhead PFCAs. Transport pathways are also for other precursor-
PFASs complex due to the change of the fate properties along the degradation.   
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As provided by monitoring data (see Annex B.4.2.4/Appendix 10) PFAS contamination is 
not geographically limited but PFASs are found ubiquitously in the environment. This is due 
to their wide dispersive uses and distribution in a global market but also due to their global 
distribution in long-range environmental transport from source regions to the entire global 
environment including remote areas.  

1.1.4.4. Mobility 

Generally substances with a moderate to high solubility in water combined with a low 
adsorption potential can be considered to have a high mobility in the aqueous environment. 
Such substances tend to stay in the water phase, rather than bind to organic material and 
sediments.  
 
Water solubility of PFASs varies from very soluble to almost insoluble (see examples in 
Annex B.1.3). For example, the water solubility of PFCAs and PFSAs is high with carbon 
chain length below 8 but with increasing carbon chain length the solubility tends to 
decrease.   
 
The adsorption potential of PFASs is also subject to variation depending on the PFAS (see 
details in Annex B.4.2.1). Data for PFCAs, PFSAs and perfluoroalkylphosphonic acids 
indicate that there is a trend of increasing Koc values with increasing chain length (e.g., 
PFCAs logKoc 0.437-3.3, PFSA 0.352-3.675). Perfluorinated olefins which lack a functional 
group have higher KOC values than the PFAAs with the same chain length. It is expected 
that PFASs lacking a functional group will be more adsorptive than a PFAS with a functional 
group of the same chain length.  
 
It should however be noted that up to a chain length of 4 carbons perfluoroalkanes have 
boiling points below 0 C°. It is more likely that these short-chain perfluoroalkanes 
evaporate into the air when released to the environment. The same applies to the short-
chain perfluoroalkylethers without further functional groups (see Annex B.1.3). 
 
Ding et al. (2018) measured the partitioning behaviour of PFASs between the dissolved 
phase, surface sediment and suspended particulate matter in the Dalian Bay, China. PFOA, 
PFBA, and PFBS were the predominant PFASs in the water dissolved phase, while PFBS, 
PFOS and PFOA were the most prevalent compounds in suspended particulate matter. A 
log Kd for PFBS of 3.4 was reported, and it was concluded that PFSAs (including PFBS) and 
the long-chain PFCAs were more inclined to prefer the suspended particulate matter phase.  
 
Generally, short-chain PFAAs and many long-chain PFAAs can be considered mobile in 
water (see section B.2.1 for details). Degradation of precursor -PFASs in the environment 
to PFAAs also render the precursors mobile in water at some point of time. For example, 
fluorinated olefins, which are not necessarily all mobile themselves, degrade into PFCAs 
(see Annex B.4.1.3) hence becoming mobile. Same occurs, e.g., to side-chain fluorinated 
polymers. 
 
Measured data illustrating the distribution of PFASs in the environment is provided in 
section B.4.2.4/Appendix 10. These support the findings based on property data on the 
mobility of PFASs. 
  
Mobility of PFASs in water contributes to their long-range transport potential, drinking 
water contamination potential, uptake in plants and in combination with high persistency 
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to increase of internal exposures in biota. See further discussion on mobility as a concern 
in section B.4.2.1 and the subsection “Combination of…” below.  

For those PFASs, which are volatile (see Annex B.4.2.2), distribution in the environment 
occurs mainly via air. 

1.1.4.5. Accumulation in plants 

Studies on accumulation of PFASs in plants are lacking for the majority of PFASs. However, 
several studies provide evidence that plants accumulate many PFASs to levels which 
exceed the expected levels based on equilibrium partitioning (see further details in Annex 
B.4.4). According to the review by Li et al. (2022), the reported average log BAF values 
range between 0 and 1 (or even exceed 1 for PFBA), indicating potential of PFASs to 
transfer from contaminated soil to plants. High accumulation of some PFASs is also 
indicated for instance by the study Blaine et al. (2013), where the accumulation of PFCAs 
(C5-C10) and PFSAs (C4, C6, C7, C8, C10) was investigated in lettuce and tomato grown 
on biosolid-amended soils. The reported BAFs for lettuce in this study ranged between 0.19 
– 28.4 (municipal soil), and between 0.52 – 56.8 (industrially impacted soil) (C10 PFDS < 
LOQ). The greatest accumulation was seen for C4 PFCA. Another study with plants from 
biosolid-amended fields (Yoo et al., 2011) reports the highest accumulation factor among 
all measured PFASs (PFCAs, PFSAs, FTOHs) for PFHxA, with a grass/soil accumulation 
factor of 3.8. Accumulation potential (BAF) decreased logarithmically with increasing chain 
length. It is noted that all the studied PFASs are arrowhead PFASs, hence also very 
persistent. 

A recent review article on exposure routes, bioaccumulation and toxic effects of PFASs on 
plants shows that bioaccumulation processes of PFASs in plants highly vary because of the 
complexity of PFAS chemistry (Li et al., 2022).  

Whereas short-chain PFASs typically accumulate in above-ground plant parts, long-chain 
PFASs accumulate in roots and show lower translocation factors to the above-ground plant 
parts. This is influenced by the higher water solubility, lower molecular size and lower 
hydrophobicity of the short-chain PFASs. Studies also indicate that the short-chain PFCA 
are more effectively taken up by plants compared to the long-chain PFCA (Felizeter et al., 
2014, Yoo et al., 2011).  

Consumption of plant material, e.g. grains and vegetables either as roots or above ground 
plant parts, function as a source of PFASs to humans and animals. Accumulation of many 
arrowhead PFASs in plants increases the relevance of this route of exposure. Accumulation 
in plants is of additional relevance when agricultural soil is contaminated with PFASs, 
leading to the contamination of agricultural plants (see Annex B.4.2.4/Appendix 10 and 
B.4.5 for an example case).  

1.1.4.6. Bioaccumulation 

The assessment of bioaccumulation is provided in Annex B.4.3 and B.5.1. Annex 
B.4.2.4/Appendix 10 on monitoring data also provide information on bioaccumulation in 
the field. By now, C11-C14 PFCAs and C6-PFSA have been shown to fulfil the vB-criterion 
and C8-C10-PFCA the B criterion (vB not assessed) under REACH.  

Studies with mammalian species show that PFASs are readily absorbed and distributed 
across various tissues and that some PFASs (particularly the long-chain PFASs) have a long 
half-life in organisms. Data for PFCAs and PFSAs and some PFECAs indicate that PFASs 
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partition into proteins. Binding to albumin and transporter proteins, which are classes of 
proteins ubiquitously expressed, efficiently distributes PFASs into different tissues, and 
enhance passage across brain, placental barriers, and transfer via milk. Accordingly, PFASs 
do not follow typical accumulation patterns, i.e. partitioning into adipose tissue, but rather 
bind and accumulate in protein-rich organs like liver.  

Generally, BCF measurements have been focused on PFHxS, PFOS, PFOA, PFNA, and PFDA. 
Accordingly, in general, carbonyl and sulfonyl PFAS classes are relatively data rich, whereas 
phosphate, fluorotelomer, and ether PFAS classes are data -limited for fish and lack data 
for most other taxonomic classes. Among the 43 PFASs compounds for which mean BCF 
and BAF studies are available in different aquatic species 62 % (27 compounds) have a 
BCF and/or BAF values above the REACH threshold for B. For example, additional PFASs 
such as F-53B and p-perfluorous nonenoxybenzenesulfonate (OBS) were recently shown 
to significantly accumulate in common carp (Shi et al. 2015; 2020). The existing studies 
suggest that PFPiAs and PFPAs follow similar pattern with PFCAs where the total number 
of perfluoroalkyl carbons correlate with the BCF. In a BCF study of Chen et al. (2016) the 
long-chain PFPiAs (total carbon ranged C12 to C18) would appear to exceed BCF of 5 000 
in fish (whole-body log BCFs ranged between 4.6 and 9.2), while the log BCF values of the 
PFPAs (C6-C10) ranged between 1.2 and 2.3 (see further details in Annex B.4.3).  

Furthermore, PFASs, particularly the PFAAs as arrowheads, accumulate more in air-
breathing organisms as compared to gill breathing organisms, because unlike the latter, 
air-breathers cannot readily eliminate PFASs by passive diffusion. Elimination to water via 
gills is facilitated by the appropriate solubility of most PFASs, while air-breathing organisms 
are not able to excrete PFASs by ventilation via the lungs to air. Thus, established 
assessment methods of bioaccumulation based on bioconcentration testing in aquatic 
organisms do not function as methodology for estimating the bioaccumulation behaviour 
of PFASs (see Annex B.4.5) in general. Unfortunately, in comparison with freshwater 
species, laboratory bioaccumulation data are very limited for air-breathers. Further 
discussion on toxicokinetic behaviour from experimental studies in laboratory mammals, 
is provided in Annex B.5.1 and B.4.3 (under subsection “Toxicokinetics in animals”). 

Short-chain PFASs are generally more hydrophilic and mobile in aqueous systems than 
long-chain PFASs. Short-chain PFASs are also more readily excreted by urinary excretion 
in air-breathing organisms and tend to be less bioaccumulative, while the strength of 
bioaccumulation potential usually increases with perfluoroalkyl chain length. In general, 
BCFs and BAFs of PFASs with 8 or more carbons increase uniformly with increasing number 
of carbons in the alkyl chain, with highest bioaccumulation potential of compounds with 12 
to 14 carbon-chain length. Available laboratory bioconcentration studies in freshwater fish 
indicate that PFASs with a shorter alkyl chain, i.e. HFPO-DA, EEA-NTH, ADONA, are 
generally less bioaccumulative in fish. However, the relationship between chemical 
structure, affinity to proteins and accumulation pattern is complex though and still a matter 
of research. For example, a comparison of laboratory BCFs with field BAFs revealed that 
60% (26 of 43 comparisons) of the BAFs are greater than their corresponding BCFs 
(Burkhard 2021), possibly due to multiple exposure routes taking place in field conditions 
(e.g. exposure via food in addition to exposure from the water phase only).  

Due to the aforementioned properties, many PFASs accumulate in air-breathers, and long-
chain PFASs biomagnify in marine and fresh-water food webs, reaching high levels in top 
predators including humans and vulnerable species (see monitoring Annex B 4.2.4). It is 
noted that as a consequence this may negatively affect the recommendations related to 
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consumption of meat and/or entrails of certain animals (e.g., deer, fish for PFOS and PFOA 
in EFSA, 2018).  

Field studies on long- and short-chain PFASs that can be analytically distinguished 
demonstrate that PFASs (primarily PFBA, PFBS, PFHpA, PFHxA, PFHxS, PFOS, FOSA, 6:2 
FTOH, F-53B, 6:2 Cl-PFESA, TFA, and C9-C11 PFCAs) are found in all environmental 
compartments in mammals, birds, fish or other vertebrates throughout Europe and 
globally. Notable is that not just arrowheads but also precursors (e.g., 6:2 FTOH, F-53B, 
6:2 Cl-PFESA) are found in biota, even though only very few studies focus on their 
detection. Given the fact that for the majority of PFASs no or insufficient data are available 
on bioaccumulation behaviour, substantial and large uncertainties remain. In conclusion 
and considering the increasing lines of evidence from modelling, laboratory and monitoring 
studies, there is a justified concern for a subset of PFASs of being bioaccumulative while 
large uncertainties remain for the majority of compounds due to lack of data. 

It is noted that routine target analysis of food items and wildlife usually includes only the 
most commonly used and/or identified C4–C15 PFCAs and C4–C10 PFSAs, missing a large 
fraction of other PFASs. Hence the actual combined exposures of all PFASs, also considering 
the expected specific bioaccumulation behaviour as described above, may be even higher 
than the one observed in the monitoring programs. 

Overall, the data on the bioaccumulation potential of PFASs, which are currently available, 
are not sufficient to substantiate bioaccumulation in the environment for all PFASs.  

1.1.4.7. Endocrine Activity / Endocrine Disruption 

Collected evidence of EA/ED of several PFASs indicates that adverse effects through 
interaction of PFASs with the hormone system as well as cross generational exposure 
cannot be excluded (see details in Annex B.7.4). In summary, the in silico, in vitro and in 
vivo data listed in Annex B.7.4 provide indications of interactions of various PFASs with the 
endocrine system of environmental species.  

1.1.4.8. Ecotoxicity 

There is evidence for a subset of PFASs that adverse effects occur (see Annex B.7). The 
large amount of different substances in the group of PFASs with heterogenous properties 
(e.g. due to different functional groups) makes the assessment of their ecotoxicity very 
complex. It is noted, that most recently, 6:2 FTOH was evaluated by RAC to warrant a 
classification of Aquatic Chronic 1 (ECHA, 2021). 

Considering the effective uptake and even accumulation of many PFASs by plants, 
consideration of plant toxicity is also relevant. However, environmentally relevant 
concentrations of PFASs rarely lead to obvious phenotypic/physiological damages in plants, 
but markedly perturb some biological activities at biochemical and molecular scales. PFASs 
exposure induces the over-generated reactive oxygen species and further damages plant 
cell structure and organelle functions.  

Overall, the data on the ecotoxicity of PFASs, which are currently available, are not 
sufficient to substantiate adverse effects in the environment for all PFASs.  
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1.1.4.9. Effects on human health 

Available scientific literature on PFASs that have been investigated in animal and 
epidemiological studies clearly show human health hazards and concerns for many PFASs 
(for details, see Annex B.5). 

There is a vast amount of literature published on the health effects of PFASs, mostly on 
the PFAA arrowheads PFCAs and PFSAs, especially on PFOA and PFOS. Other PFASs have 
been less well-studied, but attention of the research and available hazard information is 
increasing. Some precursors to PFAAs may be of less concern with regard to human health 
effects, but will ultimately add to exposure of PFAAs due to degradation (see Annex B.4.1 
for details) and hence, also add to the concern. Below the human health effects as reported 
for PFASs are summarized, per main PFAS category. 

PFAAs (arrowheads/precursors) 
In humans, many PFAAs are readily absorbed after oral exposure, while less is known 
regarding absorption after inhalation and dermal exposure (details in Annex B.5.1.). Many 
PFAAs bind to proteins and are thus distributed to protein-rich tissues including liver, 
kidneys, and blood. PFAA precursors are metabolised in humans to arrowhead PFAAs, 
which are not further metabolised. Estimated human elimination half-lives for PFAAs range 
from a few days (such as PFBA) and a month (PFHxA, PFBS) to a couple of years (such as 
PFOA, PFNA, PFDA, PFHxS or PFOS) or >10 years (e.g. PFUnDA). Half-lives are much 
shorter in rodents than in humans and a difference in half-lives between sexes is often 
observed. Consequently, the observed toxicity in rodents underestimates the toxicity to 
humans. PFAAs are mainly excreted via urine and faeces and are released to the 
environment. PFAAs have a strong potential for bioaccumulation in humans as shown by 
the long half-lives (details in Annex B.5.1) due to the protein-binding properties (details in 
Annex B.4.3). 

EFSA extensively reviewed the epidemiological evidence for association between PFAS 
exposure and adverse effects in humans (EFSA, 2018; EFSA, 2020). Most data were on 
PFOS and PFOA, but information was available also for some other PFCAs and PFSAs. EFSA 
inferred that there is sufficient evidence to conclude that there is association between 
increased serum levels of various PFCAs and PFSAs and reduction in vaccine antibodies, 
increased propensity of infections, increased serum cholesterol, increased serum alanine 
transferase (ALT) and reduced birth weight. EFSA also identified some evidence of 
increased propensity of infections (Annex B.5.3).  The association with immune effects was 
considered the most sensitive endpoint in humans (supported by data from experimental 
animals) and based on this EFSA has established a Tolerable Weekly Intake (TWI) of 4.4 
ng/kg bw/week for the sum of PFOA, PFOS, PFNA and PFHxS (EFSA, 2020). Epidemiological 
studies published after the EFSA opinion generally support or strengthen conclusions on 
the above-mentioned associations and some more data on other PFAAs than PFOS and 
PFOA have become available. Furthermore, additional data for the PFOS alternative 6:2 Cl-
PFESA (F-53B), which were not evaluated by EFSA, indicate similar associations with these 
health outcomes. 

Experimental animal studies across different groups of PFASs demonstrate that liver, 
kidney, thyroid, immune system, and reproduction are main targets of PFAAs’ toxicity, as 
outlined in Annex B.5. In rodent studies, the most consistent effects included enlarged 
liver, hepatocellular hypertrophy, increased serum ALT, increased kidney weight, toxicity 
to reproduction, effects on lymphoid organs, and decreased serum thyroid hormone levels. 
In particular liver effects have been observed for most PFAAs for which animal studies are 
available (Annex B.5.2). For PFOS, PFOA, PFNA, and PFDA and their salts this has resulted 
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in harmonized classifications for carcinogenicity (Carc. 2), reproductive toxicity (Repr. 1B), 
lactation effects (Lact.) and specific target organ toxicity - repeated exposure (STOT RE 1, 
except for PFDA), see Annex B.3. Harmonized classifications for PFHpA (Repr. 1 and STOT 
RE 1) and 6:2 FTOH (STOT RE 2) have been agreed by RAC but are not yet officially 
included in Annex VI of CLP. 

Data available for less well-studied PFAA arrowheads and some PFAA precursors indicate 
that these PFASs can have similar effects as the well-studied ones mentioned above (see 
Annex B.5). For example, PFBA exposure of experimental animals resulted in similar effects 
on liver (enlarged liver, hepatocellular hypertrophy and partially necrosis) as well as thyroid 
hypertrophy and full litter resorption, although effects occur at higher concentrations 
compared to PFOS/PFOA. Another example is HFPO-DA (GenX), which was initially 
introduced as a safer alternative to PFOA but showed comparable concerns as PFOA (Blake 
et al., 2020) and for which US EPA recently proposed an even lower reference dose than 
for PFOA and PFOS (EPA US, 2021).  

As supporting evidence for similar toxicity concerns, a number of other PFAAs and PFAA 
precursors have self-classifications for Carc., Repr., Lact. and/or STOT RE. These self-
classifications cover, for example, the following PFAS categories: the side chain aromatics 
(part of which are TFA precursors), the fluoro-telomers (e.g. fluorotelomer alcohols, 
epoxides, (meth)acrylates, sulfonic acids, etc.), and other PFAA-precursors (e.g., 
perfluoroalkyl iodides, sulfonamides, carbonyl amides etc.; details in Annex B.3). 
Exemplarily of note, HFPO-DA, PFOS, 6:2 FTSA and 8:2 FTSA have self- classifications for 
STOT RE, and PFOS as well for reproductive toxicity. Even though there is still a large 
number of PFASs that have no (self-)classification for the properties of concern, the 
absence of classification does not mean that these PFASs do not have these properties. It 
is more likely that for the vast majority of these substances, no study data are available 
to serve as a basis for classification. In the absence of evidence to the contrary, it can 
therefore be assumed that some of the less well studied PFAAs and PFAA precursors also 
exhibit one or more of the properties of concern. 

Many PFASs contain only a single –CF3 group and are considered TFA precursors as a 
special subclass of PFAAs. This group is heterogeneous with various types of effects and 
mechanisms of actions. The effects of these substances measurable in standard tests can 
often be attributed to the non-fluorinated parts of the substances. However, as these 
substances will ultimately degrade in the environment to TFA (see Annex B.4.1.3), they 
will contribute to the overall exposure to and risks of PFAAs. Concerns for human health 
by TFA itself are limited to effects at high doses in experimental animals: liver effects 
(increased liver weight, hepatocellular hypertrophy, increased ALT), increased kidney 
weight, decreased white blood cells, reduced weight of reproductive organs, litter loss, 
reduced body weight of offspring, and malformations. 

Polymeric PFASs 
Polymeric PFASs cover fluoropolymers (incl. fluoroelastomers), side-chain fluorinated 
polymers as well as per- and polyfluoropolyethers. For fluoropolymers, it is often assumed 
that they are non-toxic due to their alleged size- and chemically inertness- related non-
bioavailability (Henry et al., 2018). The non-bioavailability has been questioned by 
Lohmann et al. (2020), summarising variability of airborne fluoropolymer particle size as 
well as membrane crossing capabilities of macromolecules, such as polymers and 
corresponding nanoparticles (details in Annex B.5.1). Furthermore, polymer molecules, 
e.g. from plastics or resins, are not all of the same large size and that especially the low 
molecular weight fraction is small enough to be diffusible. Additionally, the polymer-specific 
chemical diversity (e.g. size, reactive groups, polymerization aids, additives, unintentional 
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PFAS by-products, impurities, etc.)  determine their potential toxicity (more details in 
Annex B.5.2). Blood and liver concentrations of polychlorotrifluoroethylene (PCTFE) trimer 
and tetramer oligomers as well as PCTFE 3.1 oils of different compositions were reported 
after oral exposure in monkeys (Jones et al., 1991), which indicates systemic distribution 
of polymers with low molecular weight.  

Excessive inhalation of aerosolized fluoropolymer-containing products and pyrolysis 
products of fluoropolymers in humans and experimental animals is reported to cause 
respiratory illness, such as acute chemical pneumonitis, and reactive airway dysfunction 
syndrome, occasionally accompanied by nonspecific  systemic symptoms,  such  as  fever,  
chills,  malaise,  arthralgias,  and  nausea (REFs: Strøm and Alexandersen 1990; Hays and 
Spiller 2014; Johnson et al. 2018). These effects are of unclear etiology but demonstrate 
a potential toxicological relevance of fluoropolymers and their degradation products in 
acute inhalation exposure scenarios. However, toxicological relevance was also shown in 
continuous inhalation rodent exposure studies. 

Repeated oral animal studies (mainly with rodents) with polytetrafluorethylene (PTFE) and 
polychlorotrifluoroethylene (PCTFE) trimer and tetramer oligomers, reported adverse 
health effects, such as loss of body weight and/or liver effects, which would generally fit 
the typical effects observed for PFASs (details in B.5.2). However, insufficiently reported 
study details weaken the power of the available effect data for PTFE and PCTFE. Clarity on 
effects after repeated oral exposure of the highly diverse group of fluoropolymers cannot 
be given on the basis of available data. However, at any point in their lifecycle 
fluoropolymers may generate PFAAs, e.g. during incomplete incineration at end-of-life 
(Lohmann et al., 2020), and as such contribute to the overall exposure to and risks of 
PFAAs.  

The structures of side-chain-fluorinated polymers and polyfluoropolyethers are different 
from that of fluoropolymers. Little to no data is available on the toxicity of these two groups 
of polymeric PFASs. However, for side-chain fluorinated polymers it is expected that they 
release PFAAs at any point in their lifecycle, and will thus contribute to the overall exposure 
to and risks of PFAAs (Wood, 2020, OECD, 2021a).  

F-gases 

For various HFCs, HFOs, and HFEs, some effects are similar to those observed for PFCAs 
and other PFAA arrowheads, in particular effects on liver and lymphoid organs (see 
Annex B.5). Data available indicate that most of the F-gases have lower potencies 
compared to the arrowheads. Moreover exemplarily, some F-gases (e.g. some HFOs) 
ultimately degrade to PFAAs, e.g. TFA or PFBA (Annex B.4.1.3). Hence, also F-gases will 
contribute to the overall exposure to and risks of PFAAs. 

Cumulative effects of co-occurring PFASs 

Many different PFASs co-occur in the environment, drinking water, food, and in human 
blood (see section B.4.2.4). Many PFASs exhibit similar effects, such as effects on the 
liver, kidney, thyroid, serum lipids, and immune system. Accordingly, an assessment of 
hazards and risks taking into account such combined exposure would reflect exposure 
conditions more realistically than single compound assessments. 

The similarity of the effects of most PFAS groups raises concerns about cumulative 
effects of PFASs . The lack of toxicity data for most PFASs precludes precise modelling of 
combined effects of all PFASs but concentration addition has been suggested as a 
precautious first tier, irrespective of the modes/mechanisms of action of the mixture 
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components (Backhaus and Faust, 2012). This might give a realistic worst-case 
estimation of combined toxicities for risk assessment procedures even if similarity of 
components is unknown (Backhaus et al., 2000, Martin et al., 2021). Dose addition has 
also been adopted as the default assessment approach in EFSA’s “Guidance on 
harmonised methodologies for human health, animal health and ecological risk 
assessment of combined exposure to multiple chemicals” (EFSA, 2019). 

However, due to the immense number of PFASs and the lack of toxicological data for the 
vast majority of them, a combined assessment for all PFASs is unattainable within the 
scope of this restriction. In conclusion, it is emphasized at this point that combined 
exposure to different PFASs affecting the same target organs may result in combined 
additive effects rendering exceedance of effect thresholds or limit values more likely than 
assessment of individual substances. 

Cumulative effects are considered in further detail in Annex B.5.4. 

1.1.4.10. Concerns triggered by combinations of properties  

Most of the PFASs manufactured, used and released to the environment can be expected 
(and are in case of investigated PFASs known) to have several of the above listed 
properties, depending on the specific identity of the PFAS. A combination of at least two or 
more properties is expected in particular for the arrowhead PFASs (see more details in 
Annex B.1.3, B.4., B.5 and B.7). As explained above, all arrowhead PFASs are very 
persistent, and their precursors will contribute to the environmental concentrations of the 
arrowheads as well through degradation in the environment. The presence of some of the 
additional properties is expected to correlate with each other: these are mobility in water 
with enrichment in plants and LRTP, volatility with global warming, volatility with LRTP. 

In the following sections the concerns triggered by certain combinations of PFAS properties 
are discussed. 

High potential for ubiquitous, increasing and irreversible exposure of the 
environment and humans 

Although exceptions may occur, the overall expectation is, using the general knowledge 
on degradation pathways and, more specifically, the observations from monitoring data, 
model data, degradation testing (see Annex B.4.1. for details) and information on mobility 
(Annex B.4.2.1 and volatility (see Annex B.4.2.2) that the more time that passes after the 
release of PFASs into the environment, the more the environment is exposed to those 
PFASs which are the most mobile in water and/or the most volatile (F-gases) and most 
persistent among the PFASs. 

Very persistent properties in combination with mobility in the aquatic environment results 
in a scenario where none of the environmental compartments act as a potential removal 
pathway (i.e. a sink). In this scenario, mobility increases the already high potential of very 
persistent substances to result in exposures of biota and humans. Marine surface water is 
an important compartment for very persistent and mobile PFASs and facilitates their 
distribution by advection (Cai et al., 2012b). Occurrence of elevated concentrations of 
PFASs in waters near the points of releases are problematic, because mobile substances 
are also bioavailable for efficient uptake in the food chain. Cai et al. (2012b) discusses this 
for coastal waters as an intermittent storage before PFASs are further diluted in the marine 
environment. 
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The very persistent PFASs have time to be distributed in and between environmental 
compartments, such as aquatic and atmospheric media. Combined with mobility, the 
distribution and transport via aqueous media is efficient and faster than for non-mobile 
substances. PFASs therefore reach effectively all media, including groundwater aquifers 
which function as drinking water reservoirs. This is illustrated by monitoring data showing 
that measured PFASs are already ubiquitously present in the environment (see section 
B.4.2.4).  

Furthermore, PFASs are subject to long-range transport. Long-range transport in 
combination with very high persistence means that even the most remote sites of the globe 
and most vulnerable environments cannot be protected from PFAS exposures. 

For the very persistent PFASs environmental concentrations increase as a result of releases 
until reaching a steady state at a far point of time. In consequence also PFASs having less 
or no bioaccumulative properties can show elevated levels in biota as illustrated by 
monitoring data (B 2.4.2). Recent models demonstrate that mobile and persistent PFASs 
will ultimately reach over time -unless the exposure is removed- such high levels in 
organisms that will affect both ecosystems and human health widely (Crookes and Fisk 
2018). The report by Crookes and Fisk (2018) indicates that also substances which have 
bioconcentration factors below 2000 L/kg could potentially reach similar levels in biota 
compared to substances that are known to bioaccumulate, provided that they are 
sufficiently persistent and mobile in the environment. For example, calculations in the 
study show that a substance with a half-life of 365 days and a BCF of 800 l/kg may reach 
comparable concentrations in a system as a substance with a half-life of 60 days and a 
BCF of 5000 l/kg, if time allows for steady-state to be reached. See Annex B.4.3. 
“Persistence compensating for low bioaccumulation potential” for further details. 

As a case study applying the model of Crookes and Fisk (2018), the nominal biota 
concentration calculations were repeated for PFBS and compared with some relevant model 
substances (ECHA 2019a). A degradation half-life in water of 10 years for PFBS was 
assumed, representing a best-guess estimate in the absence of any measured degradation 
half-life, and the calculations were performed with the following bioaccumulation values: 
BCF Fish: 23.5 (Chen et al., 2016); BAF crab 110 (Naile et al., 2013) and BAF fish 1736 
(Campo et al., 2015). The outcome of the modelling of development of biota concentrations 
for PFBS over time is shown in Figure 3. The model substances (A, B, C and D) have 
combinations of half-life and BCF as shown in Figure 3. An assumption in the model is that 
the substance is mobile and not removed from the aqueous phase so that the 
concentration, and therefore the exposure, is maintained unchanged over time. 
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Figure 3. Modelling of development of nominal biota concentrations for PFBS 
over time. 
 

Figure 3 demonstrates in a simplified way that when considering an appropriate long time 
scale, e.g., few decades (note figure X shows only 5.5 years), a long degradation half-life 
for a substance may lead to high steady-state concentrations in biota, even when the BCF 
is only moderate. The red line represents a BCF of 1736 for PFBS reported in fish (Campo 
et al., 2015) and demonstrates the effect of a long half-life in combination with a relatively 
high BCF. However, as is outlined in (ECHA 2019a), this BCF is an outlier and may be an 
overestimate, and the red line is disregarded in this evaluation. The green line represents 
a BAF of 110 measured in crab (Naile et al., 2013). The graph shows that this moderate 
BAF in combination with a half-life of 10 years, may lead to very high concentrations in 
biota over time. The green line even crosses the dark blue line, representing a substance 
with half-life in water of 41 days and a BCF of 2100, i.e. a substance just exceeding the P 
and B criteria in REACH Annex XIII. For the substance B combination of BCF of 1 and half-
life of 30 years the high steady state would be reached very slowly far beyond the time-
scale of the simulation. When the model from the Crookes and Fisk (2018) report is used 
for PFAS, concentrations of very persistent and mobile subgroups in biota may be expected 
to exceed the biota concentrations for a persistent and bioaccumulative substance over 
time. The steady state in biota would only be reached for PFASs in the model in far future. 

Bioaccumulation and mobility can be seen as properties facilitating exposure and enhancing 
the likelihood of adverse effects in particular when combined with the very persistent 
property. With regard to bioaccumulation this is due to the slowly reversible internal 
exposure caused by a slow elimination kinetics in organisms and therefore elevated internal 
levels. Exposure to very persistent and mobile PFASs occurs continuously via drinking 
water and food crops. Finally, some PFASs (e.g., PFOA) can be both, mobile and 
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bioaccumulative and distinguishing between the impact of each of the properties to the 
observed levels is not always possible.   

To conclude, mobility in combination with very high persistence cause a high potential for 
increasing contamination of surface waters and aquifers. This contamination is very difficult 
to reverse. Even if releases are ceased, the exposure levels of the arrowhead PFASs 
continue to increase until the precursor PFASs have gradually all vanished from the 
environment. The environmental stock of the arrowhead PFASs formed is expected to 
prevail in the environment for decades if not centuries and is readily available for uptake 
by biota and humans. 

Difficulty to decontaminate raw water and to reduce emissions with site-specific 
risk management 

The combination of the very high persistence of PFASs and mobility and for many PFASs 
also of surface activity trigger specific challenges to wastewater treatment and 
decontamination of, e.g., raw water used for drinking water and contaminated sites (e.g., 
groundwater contamination around airports, see Annex B.4.5).   

Municipal sewage treatment plants are not able to remove very persistent and mobile 
PFASs as they remain in the water phase and cannot be degraded within the retention time 
by the available micro-organisms. The available chemical removal methods are expected 
to reach removal of only a small fraction from the aqueous phase. The suspended PFASs, 
however, cannot be not degraded in sludge, or are in an ideal case merely degraded from 
precursor forms towards arrowhead forms. The monitoring data in influents and effluents 
of municipal sewage treatment plants supports this pattern (see Annex B.4.2.4). 

Conventional and advanced raw water treatment methods applied to produce process 
water for industry and drinking water are neither able to remove PFASs effectively due to 
their persistence and inertness to chemical and thermal reaction. Thermolysis and 
sonolysis might achieve complete mineralization but come with a high process cost. Other 
treatment processes cannot remove PFCAs and PFSAs. The same applies to PFECAs. 
Conventional adsorption, ion-exchange, and membrane filtration can remove long-chain 
PFASs, but are less effective for the more hydrophilic short-chain PFASs. See Annex B 4.5 
for details. 

Raw water used for drinking water is obtained either from groundwater, bank filtration or 
surface waters. Monitoring data already reveal a contamination of either drinking water 
itself or raw water, ground water and river bank filtrates used for the preparation of 
drinking water (see Annex B.4.2.4). A recent review paper from (Li et al., 2020) on drinking 
water treatment concludes that short-chain PFAS are more widely detected, also persistent 
and even more mobile in aquatic systems, and thus may pose broader risks on the human 
and ecosystem health as compared to their long-chain counterparts. Routine target 
analysis, however, usually only addresses very few PFASs missing a large fraction. 
Furthermore, due to an analytical gap in the past the problem of persistent and mobile 
organic compounds and their impact on drinking water quality has been underestimated 
(Reemtsma et al., 2016), making older monitoring data possibly giving too optimistic views 
of the presence of PFASs in the environment.  

The challenges are further elaborated in Annex B.4.5. To conclude, there are significant 
limitations to remove the PFASs from raw water and wastewater or sludge. In general, it 
seems that releases to water cannot be mitigated with on-site removal techniques, 
although some specific exceptions may apply. Exposure of humans via drinking water 
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cannot be prevented effectively. Removal or remediation might only be feasible for 
contamination hotspots in few specific cases, but not for the majority of the environment, 
such as large aquifers, surface waters and the world's oceans.  

High potential for human exposure via food and drinking water 

Accumulation of many PFASs in edible plants, the bioaccumulation potential observed in 
some PFASs in a.o. fishery products and the very high persistence and mobility as 
discussed above mean that human exposure via food can be expected to be transmitted 
broadly by many routes of nutrition. Furthermore, drinking water is also a source of PFAS 
exposures due to the difficulty to decontaminate raw water prepared for drinking water. 
The exposure via drinking water and via food is expected to increase in future due to 
expected increasing concentrations of the arrowhead PFASs in the environment unless 
releases of PFASs are ceased. Even then it will take a very long time until the environmental 
concentrations are considerably reduced due to the high persistence if the substances. To 
conclude, the abovementioned combined properties of PFASs induce a high potential for 
exposure of the human population at large. Current exposure of the general population 
can be observed for several PFASs from the available biomonitoring data (see section 
B.4.2.4). 

Potential for intergenerational effects and delay of effects 

Several PFASs are transferred to the offspring (see Annex B.4.2.4 and B.5). The high 
potential for human exposures and the expected increasing and irreversible exposures, as 
discussed above, in combination with the intergenerational transfer of PFASs indicate that 
none of the stages of human life and wildlife can be effectively protected from exposure to 
PFASs. The very long-term exposures, continuing over decades or even centuries increase 
the likelihood for intergenerational effects. Furthermore, although effects would not be yet 
observed, the expected increase of exposures to the arrowhead PFASs even after releases 
have been ceased together with the above discussed results from tests on human health 
toxicity and endocrine disruptive effects raise the likelihood of effects to be observed at a 
later stage. At such point of time the effects would be very difficult to reverse. 

Considering the increasing lines of evidence for effects of well-studied PFASs occurring at 
lower levels than previously anticipated (EFSA, 2020), combined with increasing findings 
of hazardous properties of less studied PFASs (e.g., ECHA, 2020; ECHA, 2021) and the 
increasing stock pollution and the expected irreversible ubiquitous environmental 
contamination as outlined above indicates a threat of irreversible damage for future 
generations. The findings from studies investigating endocrine effects add to the concern. 
If yet unidentified adverse effects do occur these cannot be reversed. 

Potential for causing serious effects although those would not be observed in 
standard tests 

Already only the arrowhead PFASs constitute a diverse mixture of exposure whereas all 
the released PFASs in combination with the arrowhead PFASs form a very complex cocktail 
in the environment. As concluded in Annex B.5.4, combined effects should not be excluded 
but rather expected in this situation. There are no standard tests available which could 
simulate the exposure of PFASs taking place in the real environment. Additionally, potential 
effects arising from low-dose long-term exposure, as well as multigenerational exposures 
cannot be appropriately addressed by standard tests. 
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Additionally, the fact that exposures may take place at a different location than where 
releases occurred, and at a different moment in time due to the persistence, impedes the 
understanding of potential effects taking place. 

Estimation of future exposure levels and safe concentration limits is highly 
uncertain 

Currently no appropriate tools exist to estimate exposures reliably far in future. The 
prediction is further complicated for PFASs by the degradation of the precursors to the 
arrowhead PFAS. Number of PFASs in total yet higher than the number of PFASs 
manufactured and used can be expected to be simultaneously present in the environment. 
Environment is also exposed to intermittent degradation products. In example, side-chain 
fluorinated polymers (SFPs) which degrade in the environment at a very slow rate are a 
long-lasting constant source especially if long timeframes are investigated for emissions 
and exposures over centuries. This applies particularly to the end of service-life where 
surface soils and landfills constitute a major global reservoir for PFASs (Washington et al., 
2019).  

Currently it is also not possible to reliably assess (eco)toxcity of all PFASs. This is on the 
one hand reflected by the increasing lines of evidence for effects of well-studied PFASs 
occurring at lower levels than previously anticipated (EFSA, 2020) and findings for less 
studied PFASs (ECHA, 2020; ECHA, 2021). On the other hand, the prediction of safe levels 
is more challenging, if not impossible, due to the complex mixture of used PFASs actually 
prevailing in the environment over long-term. The simultaneous exposure to the transient 
degradation products of the precursors impedes such a prediction before they finally form 
their respective arrowhead substances. As pointed out in sections B.5 and B.7 on effects 
to human health and ecotoxicity, both similar effects and different types of effects have 
been observed in available data across the PFASs. Combined effects can be expected over 
the long-term increasing exposure periods, as described in section B.5.11. This 
furthermore complicates the derivation of safe levels.  

Global warming potential 

Some of the PFASs are persistent and volatile and will partition to the atmosphere where 
they will stay for a very long time. These PFASs may have a considerable global warming 
potential which could contribute to the greenhouse effect and global warming. In fact, 
some of the strongest greenhouse gases known are PFASs. For details, see Annex B.7.2.  

One of the most relevant subclasses of PFASs that contribute to global warming are the F-
gases, e.g. hydrofluorocarbons (HFCs), hydrofluoroolefins (HFOs) and hydrofluoroethers 
(HFEs). Emitted F-gases reside in the atmosphere. The Environmental Coalition on 
Standards (ECOS) notes in a recent report that even though F-gases ‘only’ account for 
approximately 2% of the greenhouse gas (GHG) emissions in the European Union by 
weight, their contribution to the radiative forcing is about 20%, thus being a major 
contributor to global warming (ECOS, 2021). F-gases in the atmosphere will degrade over 
a shorter or longer timeframe and the contribution to global warming will be removed, 
e.g., via formation of TFA that precipitates with rain or other species like HF and CO2. 
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1.1.5. Exposure assessment 

Based on an extrapolation of data provided by Eurofeu (see Annex A for more details) it is 
estimated that about 18 000 tonnes of PFAS-containing firefighting foam 
concentrates are sold in the EU per year, fluctuating between 14 000 to 20 000 tonnes. 
Of the total (central estimate), about 10 800 tonnes are estimated to be employed in fixed 
systems and about 7 200 in mobile systems24. The split by sector is detailed in Figure 4 
below. This shows that chemical/petrochemical is by far the largest user sector of foams 
(59 %), but municipal fire brigades, marine applications, airports and defence applications 
also account for significant volumes. Ready for use products only account for a very small 
share of PFAS-containing foams, the vast majority of this category are fire extinguishers. 

 

Figure 4. Split of PFAS-containing firefighting foams by sector. Source: (Wood 
et al., 2020) based on data provided to the authors by Eurofeu. 
The use of these PFAS-containing firefighting foams accounts for an annual consumption 
of around 480-560 tonnes of fluorosurfactants per year in the EU, based on data provided 
by Eurofeu. 

According to the model calculations under the baseline scenario25, a total annual emission 
of around 470 tons of PFASs across the environmental compartments would occur26. This 
represents a total of around 14 100 tonnes of cumulative emissions of PFASs over 
30 years.  

The emission estimates are based on data and assumptions from Wood et al. (2020) and 
further refined based on additional stakeholder input, ECHA Guidance R.16  (ECHA 2016b) 

 

24 All these figures have been extrapolated from the original values provided by Eurofeu, which covered 
approximately 70 % of the market. The number of companies that provided a response on whether the foams 
are used in fixed or mobile systems is lower than those that provided a response for the sectoral overview, 
therefore in the original data the total tonnage of the former is lower than the latter. To fill this gap, the 
tonnages for both fixed and mobile systems have been inflated so that their total matches the total in the 
sectoral split 
25 Using the central scenario (i.e. best estimates input parameters) 
26 With the same sectoral breakdown as the sales data. 
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and, where no data are available, based on expert judgement (see list of input parameters 
in Section 3 “Assumptions, uncertainties and sensitivities”). 

Eight sectors/use categories were considered27: 

 Oil/(petro-)chemical industry 

 Other industries28 

 Civilian aviation 

 Defence 

 Municipal fire services 

 Ready-to-use applications 

 Marine applications 

 Training and testing (for all the above categories except Ready-to-use 
applications)29. 

Using a source-flow model and the assumptions outlined in Section 3 “Assumptions, 
uncertainties and sensitivities” and Annex B.9., F.5.2 and Appendix 8 the material flow and 
emissions to the environmental occurring at different life cycle steps were calculated for 
the baseline (and each assessed restriction option). The sources of emissions under the 
baseline scenario are illustrated in Figure 5. 

Regarding the emissions of PFAS-containing foams by life cycle stage, a central estimate 
of 10 % annual use for incident management and 2 % for training and testing is assumed, 
across all sectors (percentages compared to foam stock)30. During training exercises, aside 
from marine applications, it is assumed that the efficacy of bunding31 and/or other control 
measures is relatively good32. This means that for training and testing, much of the 
firefighting concentrate within runoff is contained and, under the baseline scenario, sent 
primarily to either an on-site or off-site wastewater treatment plant (WWTPs). For 
incidents, the collection of firewater runoffs33 is considered to be less effective and variable 
among sectors and, under the baseline scenario, the collected fire waters are mainly sent 
to WWTPs34. It is noted that municipal WWTPs are not effective in removing/eliminating 
PFASs (see section B.4.5 and B.4.2.4). 

 

 

27 See Annex E.2.5 on technical feasibility of alternatives for details on the sectors/use categories. 
28 Assumed to represents 2% of the PFAS-containing foams sales to the oil/(petro-)chemical industry indicated 
by Eurofeu, the remaining 98% assumed to be used by Seveso establishments. See section A.2.3.1 in Annex 
for more details. 
29 “Training and testing” has been segregated as a separate type of use, across all sectors of use, to better 
assess the impact of a shorter transitional period compared to longer transitional periods for uses for real fire 
incidents. 
30 See Annex B.9 for details 
31 The use of retaining walls to contain fire water run-off. 
32 Assumed to be 97% (see assumptions and input parameters in section 3. “Assumptions, uncertainties and 
sensitivities”). 
33 Fire runoff waters (or “fire water runoff”) are the run-off waters containing the firefighting foam concentrate 
mixed with water and all other elements mixed with them during the use of the firefighting foam during a fire 
incident, training or other use (e.g. flammable liquids, dirt, etc). 
34 In absence of more specific and representative data, the Dossier Submitter assumes for a conservative 
assessment that the typical treatment method of collected fire waters containing PFASs is wastewater treatment 
plant (see Annex B.9 for more details). 
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Figure 5. Material flow diagram showing the connection between the different 
life cycles stages of formulation, in-use, stock and waste treatment for PFASs in 
firefighting foams under the baseline scenario. 
 

Table 2 describes the calculated total emissions of PFASs in the environment under the 
baseline per sector or use. 

Table 2. total emissions of PFASs to the environment under the baseline per 
sector or use* 
Sector/type of use Annual emissions (t/y) 
oil/(petro-)chemical industry (Seveso 
establishments) 200 

Other industries <10 

Civilian aviation 40 

Defence 20 

Municipal fire services 50 

Ready-to-use applications <10 

Marine applications 50 

Training and testing 80 
All sectors ~470 

*Note: Rounded figures. These are approximate values 

Regarding the emissions to the environment, it should be noted that while the non-
fluorinated firefighting foams make up approximately one third of the market, the volumes 
of alternative surfactants can be greater than their PFAS counterparts due to greater 
concentrations within the product itself, potentially leading to higher emissions of the non-
fluorinated alternatives. However, it is important to recognise that emission alone is not 
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an indicator of impact, and the degradation rates, potential for bioaccumulation, and 
harmful effects also need to be considered (as discussed in section 0 and in more detail in 
Annex B.5). 

For the non-fluorinated alternatives, the effectiveness of wastewater treatment is 
considered to be relatively good35, minimising the emission which is split between surface 
water and soil. In contrast, wastewater treatment is expected to be ineffective at treating 
PFASs, meaning direct release to surface water or soil depending on the partition 
coefficient.  

1.1.6. Risk characterisation 

All PFASs exceed the vP criteria, either themselves (arrowheads) or by degrading to 
arrowhead PFASs. The half-lives of the most stable PFASs (e.g., PFAAs) are known to be 
in the order of years, by far exceeding the vP criteria. Due to the high diversity of the 
PFASs the bioaccumulation potential and ecotoxicity are expected to largely vary among 
the substances. Therefore, no conclusion on B/vB and T criteria was derived for each 
substance/subgroup. The very high persistence is not sufficient to identify the PFASs as 
PBT or vPvB substances. However, the additional properties described above combined 
with the very high persistence add substantially to the overall concern which are very 
similar to those of the PBT/vPvB substances. Therefore the case-by-case approach has 
been investigated below.  

Case by case assessment according to para 0.10 of Annex I to REACH  

As summarised in section 1.1.4 on the properties, PFASs have a high potential for 
ubiquitous, increasing and irreversible exposures of the environment. This in combination 
with a difficulty to decontaminate raw water for drinking water and low effectiveness of 
end-of-pipe wastewater treatment trigger a high potential for human exposure via food 
and drinking water. These together, in addition with the intergenerational transfer 
mechanisms, lead to a potential for intergenerational effects and delay of effects. Due to 
the complex co-occurrence of PFASs in the environment and the very long-term exposures, 
standard tests do not provide sufficient understanding of possible effects. Furthermore, 
due to the exposure to mixture of PFASs in the environment, complex degradation patterns 
of precursor PFASs to arrowheads and due to the very high persistence and hence exposure 
times reaching decades if not centuries, quantification of future exposure levels and safe 
concentration levels is highly uncertain for PFASs. Combined effects may be expected for 
PFASs. The significant global warming potential of many volatile PFASs adds yet another 
category of effects to the picture. 

Because of the persistence of PFASs, its mobility and long range transport potential, 
concerns have been expressed about whether their releases into the environment might 
ultimately reach concentration levels that could breach so-called ‘planetary boundaries’ – 
a point at which the earth is no longer able to assimilate or degrade a human-released 
chemical which is discovered only too late to have a disruptive effect on a vital earth 
system, and the effects of the pollutant cannot be readily reversed (Persson et al., 2013; 
Diamond et al., 2015). At the time when notable effects from PFASs exposure occur in 
the environment it will be difficult, if not impossible, to remove the contamination. Due to 
the ubiquitous occurrence of PFAS this may ultimately lead to an impairment or total loss 

 

35 Calculation of emissions of non-fluorinated alternatives has not been undertaken under this report. However, 
Wood et al. (2020) made a basic assessment for several alternative substances. 
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of important natural resources, as well as increased overall pressure on human health 
and the ecosystems (Goldenman 2017). Examples could be a loss in biodiversity or 
impaired ecosystem services (e.g. regulating or provisioning services).  

Continued emissions of PFASs will result in increasing exposures and therefore a high 
likelihood that effect thresholds of PFASs known to cause effects are exceeded and those 
of PFASs with yet unknown effects to occur. These would be caused by single PFASs and/or 
in a mixture with other PFASs. It should be noted also that for human sensitive endpoints 
of PFASs, such as effects on the immune system, and in highly exposed populations, effect 
thresholds of the most studied long-chain PFASs PFOA and PFOS are already exceeded 
today (EFSA, 2020).  

It is obvious that PFASs should be treated as non-threshold substances for the purpose of 
risk assessment in a similar manner to PBT/vPvB substances. Their releases should be 
accordingly used as a proxy for risk. To minimise the likelihood of adverse effects in the 
future all releases should be minimised. According to REACH Annex I, paragraph 0.10, a 
case-by-case approach applies for PFASs as underpinned by the available information on 
their high persistence in the environment in combination with the additional properties 
summarised above.  

Section 1.1.5 summarises the information on the current releases of PFASs from 
firefighting foams to the environment. Manufacture, placing on the market and use of some 
PFASs have already been restricted in the EU (e.g. PFOA, PFOS and, as of February 2023, 
C9-C14 PFCAs and their salts and related substances) or are in the process of being 
restricted (e.g. PFHxS and PFHxA and their salts and related substances), however most 
of the PFASs need to be still addressed by regulatory risk management. Monitoring data 
for some PFASs show that PFASs are ubiquitously distributed in the environment. It should 
be noted that so far only a limited subset of PFASs are addressed in monitoring programs 
and therefore current monitoring results are expected to provide only a partial picture of 
the overall exposures to PFASs. 

In conclusion, the observations of the ongoing releases and exposures together with the 
non-threshold nature of the hazard warrant a need for minimisation of the releases by the 
proposed restriction.  

It is noted that RAC supported the proposal to restrict microplastics based on a closely 
similar case-by-case hazard and risk assessment approach (ECHA, 2020). Analogously, a 
specific case for excluding a PFAS from the scope of the proposed restriction could be 
made if sufficient evidence is provided that the specific PFAS is not very persistent itself 
and does not degrade into a very persistent PFAS.  

1.2. Justification for an EU wide restriction measure  

Section 0 has illustrated the hazards and combined concerns associated with PFASs. In 
section 1.1.5 an overview of the current releases and exposures due to the use of PFASs 
in firefighting foams was provided. Section 1.1.6 summarises that due to the non-threshold 
nature of the hazards, the risks cannot be quantified and that current releases of PFASs 
should be minimised. Any release should be considered a proxy for risk. Due to the ongoing 
releases, the risks are currently not adequately controlled.  

While in some user sectors PFAS-based foams have been increasingly replaced by fluorine-
free alternatives and industry best practice guidance recommends not using PFAS-
containing foams in training and testing, around 18 000 tonnes of PFAS-containing 
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firefighting foams are still used annually in the EU in applications involving flammable liquid 
fires (Class B fires), including for testing and training. This use leads to releases to the 
environment, with surface water and soil being the key receiving environmental 
compartments. Some PFASs were shown to be ubiquitous contaminants, for instance in 
arctic wildlife (Muir et al., 2019). 

The use of certain long-chain PFAS substances has been regulated in the past. This has led 
to the replacement of these regulated PFASs with fluorine-free alternatives in some cases, 
but also with other PFASs substances (e.g. short-chain PFASs), as illustrated by the fact 
that a high share of firefighting foams used still contain PFASs. 

Some national regulations exist that require the containment of firewater run-off, but the 
consultation suggested that containment is rarely 100 % effective, that the collected fire 
water is usually sent to WWTP (unless prescribed differently by local/national legislation) 
and the effectiveness of WWTP in the degradation of PFASs is known to be poor. Industry 
best practice measures aim to minimise the use and release of PFAS-containing foams 
(e.g. ceasing its use in training and testing, as has happened in many locations already) 
but the stakeholders consultation suggested that these are not being fully implemented 
(e.g. the use of PFAS-containing foams in training and testing has been reported). 
Stakeholder input did not allow to conclude on their relative effectiveness. 

In conclusion, it has been demonstrated that the use of PFASs in firefighting foams is 
associated with risk to the environment - and human health via the environment - that is 
not adequately addressed by the current measures in place (current measures are 
discussed in more detail in Section 1.3). Even if additional measures were introduced at 
Member State level, there is potential for discrepancies in the definitions and scope of any 
national restrictions (e.g. definition of substances covered, uses covered, concentration 
thresholds, transition periods). This has implications not only for the degree to which the 
environment is protected, but also in terms of ensuring the functioning of the internal 
market. Firefighting foams being traded over the borders, different restrictions in different 
Member States could make it very challenging to market firefighting foam products 
available for sale in all Member States. It would therefore not be meaningful or possible to 
restrict them nationally due to internal market considerations. Moreover, due to their 
mobility and persistence PFASs emissions lead to cross-border pollution. Therefore, 
potential further regulatory management on EU-level is likely required.  

1.3. Baseline 

1.3.1. Overview 

The baseline presented here comprises an overview of the current use of PFAS-containing 
firefighting foams based on the market analysis (used in particular as baseline economic 
activity for the assessment of economic impacts) and an overview of the current regulatory 
and voluntary industry measures to control the risk of this use. Resulting baseline exposure 
has already been presented in Section 1.1.5 and are not repeated here. 

1.3.2. Definition of the baseline scenario for the assessment of economic 
impacts 

The baseline scenario describes the situation in the absence of any further risk 
management. It was used to compare restriction scenarios (defined in the next sub-
section), to ensure that the socio-economic assessment (SEA) evaluates the impacts of the 
RMOs being assessed. 
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More details are provided in the market analysis (see Annex A), but the key points are 
below.  

 It is estimated that currently some 14 000 – 20 000 tonnes (likely closer to the upper 
end of the range; 18 000 tonnes have been taken as best estimate in the calculations) 
of PFAS-containing firefighting foams are sold per year in the EU and used in various 
sectors including chemicals/petrochemicals, municipal firefighting, marine, airports, 
defence, railways and fire extinguishers. Their use is particularly important and 
widespread where there is a risk of Class B fires, i.e. where flammable liquids are 
present. They are used for firefighting, but in some cases also for training and testing 
of equipment. 

 Around 9 000 tonnes per year of fluorine-free foams are already used in most of the 
same applications, although the split by sector varies from that of PFAS-containing 
foams. Several stakeholders, including manufacturers of firefighting foams, have 
indicated that the use of fluorine-free foams has been increasing, particularly in 
applications where PFAS-containing foams can be very easily replaced (e.g. training). 
This trend is expected to continue in the future to some extent (even in the absence of 
any restriction on PFAS-containing foams). Some stakeholders also noted containment 
of fire water run-off, particularly from training. However, these run-offs seem to be 
mostly sent to WWTP which are considered not effective in preventing releases of PFASs 
to the environment, therefore the impact of this measure in terms of reduced emissions 
of PFASs is considered to be close to zero. 

 In addition, there are significant existing stocks of PFAS-containing foams which have 
been already purchased. These may need to be disposed of and replaced. The total 
quantity of these stocks is uncertain, but are estimated as follows:  

o Annual sales of PFAS-containing foams are estimated at between 14 000 – 
20 000 tonnes per year. 

o Current annual sales of fluorine-free foams are estimated at 7 000 – 9 000 
tonnes per year. Historically, this demand would have been served by PFASs 
containing foams, hence the total annual sales of PFAS-containing foams 
could have been some 21 000 - 29 000 tonnes. 

o The shelf life of PFAS-containing foams is reported to be typically between 
10 and 20 years (and up to a maximum of 30 years)36. Given that foams 
may be used before the end of their shelf life, the actual lifetime of foams 
could be shorter. Bipro (2011) suggests that the average lifespan of 
firefighting foams is 15 years, which appears consistent with the information 
above and the stakeholder’s consultations.  

o No reliable information is available regarding the stock of PFAS-foam at EU 
level. In this report, the total stock has been calculated as a function of the 
annual sales and the annual usage rates. Under the best estimate scenario, 
the value of 148 500 tonnes has been calculated37.  

 

36 Proposal for a restriction: Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related substances 
https://echa.europa.eu/documents/10162/a22da803-0749-81d8-bc6d-ef551fc24e19  
37 (Wood et al., 2020) estimated a stock between 210 000 and 435 000 tonnes. Comments from stakeholders 
on the PFHxA restriction proposal indicate that the figure of 62 500 tonnes would be a more realistic figure (e.g. 
(FFFC, 2020). However, the Dossier Submitted decided to derive the estimated stock based on the sales figures 
of PFAS-containing FAS foams (which are more accurately known) and the average annual usage rates 
indicated by industry stakeholders. See details on the calculations in Appendix 8. 



ANNEX XV RESTRICTION REPORT – PFAS IN FIREFIGHTING FOAMS 

 
P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | echa.europa.eu 

40 

2. Impact assessment 

2.1. Introduction 

The Annex XV restriction dossier on the use of per- and polyfluoroalkyl substances (PFASs) 
in firefighting foams was prepared at the request of the European Commission. As identified 
in section 1.1.6, uses of PFASs in firefighting foams are considered to pose a risk to the 
environment and humans via the environment that is not adequately controlled. 

This impact assessment is prepared to assess whether restriction is the most appropriate 
Risk Management Option (RMO) to control the risks; and to justify which of several 
Restriction Options (RO) is identified as the preferred option.  

The impact assessment estimates the costs and benefits of different ROs. The 
environmental benefits are described in a qualitative manner including quantified elements 
on emissions and cost-effectiveness (cost of reducing 1 kg of emission). For sensitivity 
analysis low, best and high estimates on emissions, costs and cost-effectiveness are 
reported complemented with one parameter sensitivity analysis. These low and high 
estimates are also used to present the estimated costs per sector and cost category as 
ranges, to avoid false impression of accuracy in the results. 

The assessment horizon is set to 30 years to allow full substitution of existing stocks after 
the longest sectoral transition period and shelf lives of the firefighting foams. During a 
shorter time horizon (such as 20 years), some PFAS-containing foams in use would still 
not be affected by the restriction. It is assumed that there is no trend in the quantities 
used or other input parameters. The geographical boundary of the assessment is the EEA, 
and potential impacts occurring outside the EEA are described qualitatively only. 

The proposed restriction comprises the following elements: 

 Ban on placing on the market of PFAS-containing firefighting foams 
 Ban on use of PFAS-containing firefighting foams 
 Ban on export of PFAS-containing firefighting foams 
 Transition periods for different sectors and uses 
 Concentration limit for PFASs content (including contamination) in foams 
 Requirement to implement a PFAS-containing firefighting foams management 

plan and best practice risk management measures 

The first three points (ban on placing on the market, use and export) are covered by the 
main quantitative impact assessment in this section. The justification for the proposed 
transition periods is provided qualitatively in Section 2.8.2 and the justification for the 
proposed concentration threshold is provided in Section 2.8.3. Additional risk management 
measures (implementation of management plan and best practice RMMs) are described in 
Section 2.2.5 and justified in Section 2.8.5.    

2.2. Analysis of risk management options (RMOs) 

In response to the identification of this risk, the Dossier Submitter has conducted an 
analysis of diverse risk management options (RMOs) to identify the most appropriate 
option for addressing the identified risks, including various permutations of a REACH 
restriction.  

The Dossier Submitter notes that the Commission’s choice to address the risks of PFASs, 
including in firefighting foams, by means of a restriction under the REACH regulation was 
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part of the recently published ‘The EU’s chemical strategy for sustainability towards a toxic-
free environment’38 (generally referred to as Chemical Strategy for Sustainability or CSS), 
that included a draft of both legislative and non-legislative initiatives to protect citizens 
and the environment from harmful chemicals while boosting innovation for safe and 
sustainable chemicals in Europe. It is part of the EU’s zero pollution ambition, which is a 
key commitment of the European Green Deal.  

As a REACH restriction is envisaged to deliver the objectives of the CSS39, the assessment 
of alternative novel Union-wide legislative risk management options (RMOs) was not 
specifically considered by the Dossier Submitter. Instead, it was presumed that during the 
development of the CSS due consideration was given to the most appropriate means to 
effectively achieve the strategy’s objectives; resulting in the conclusion that a REACH 
restriction was most appropriate.  

The CSS also commits the European Commission to address PFASs via a group approach 
to prevent regrettable substitution, improve reporting of PFASs releases into the 
environment (via the Industrial Emission Directive and the European Pollutant Release and 
Transfer Register), address PFASs via international fora such as the Stockholm Convention 
and establish financial support for research and innovation of PFASs alternatives as well as 
remediation practices.  

In addition, the Dossier Submitter compared the relative merits of the proposed restriction 
with risk management via existing Union-wide legislation, such as the POPs Regulation 
(and by extension the Stockholm Convention), the Water Framework Directive (WFD), 
Marine Strategy Framework Directive (MSFD), and the Urban Wastewater Treatment 
Directive (UWWTD). 

The possibility to address the risks posed by PFASs in firefighting foams with other REACH 
regulatory measures and existing Union-wide legislation and other possible Union-wide 
RMOs was examined (see section 2.2.1). Measures already taken by Member States and 
in other jurisdictions are also briefly described below for completeness, as are industry 
initiatives on PFAS in firefighting foams (see section 2.2.2). Whilst it was recognised - and 
taken into account when developing the scope of the proposed restriction - that some 
existing EU legislation or other measures could have an impact on the risk management of 
certain sectors, approaches other than a REACH restriction were deemed inappropriate to 
address the uses identified to be contributing to risk that is not adequately controlled. 

Annex E.1.3 describes the risk management options other than restriction considered, as 
well as the reasons for their rejection. 

Therefore, the option to use a restriction under REACH to address the identified risks was 
investigated further (see section 2.2.3).  

 

38 https://ec.europa.eu/environment/strategy/chemicals-strategy_en  
39 The Annex to the CSS indicates the following measure: “Proposal to restrict PFAS under REACH for all non-
essential uses including in consumer products” via REACH (Comitology) with a timeline of 2022-24. 
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2.2.1. Overview of current regulatory measures 

2.2.1.1. Stockholm Convention 

The Stockholm Convention on Persistent Organic Pollutants (POPs) restricts at international 
level the production and use of a number of specific PFASs, namely perfluorooctanoic acid 
(PFOA), its salts and PFOA-related compounds and perfluorooctane sulfonic acid (PFOS), 
its salts and perfluorooctane sulfonyl fluoride (PFOSF). The Convention includes a specific 
exemption for the use of firefighting foams containing PFOA, its salts and PFOA related 
compounds and perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl 
fluoride. 

PFOS, its salts and PFOSF are listed under Annex B of the Stockholm Convention, which 
restricts production and use to specified acceptable purposes and specific exemptions. 
Upon its initial listing in 2009, an acceptable purpose was included under the Convention 
allowing the use PFOS in firefighting foams40. At the POP Review Committee (POPRC) 
meeting in 2018, the committee recommended, based on the findings of an assessment of 
alternatives to PFOS41 , that the acceptable purposes for the production and use of PFOS, 
its salts and PFOSF for firefighting foam be amended to a specific exemption for the use of 
firefighting foam for liquid fuel vapour suppression and liquid fuel fires (Class B fires) 
already in installed systems, including both mobile and fixed systems, and with the same 
conditions put in place for PFOA (see below). This exemption was agreed accordingly at 
the Ninth Meeting of the Conference of the Parties (COP) to the Stockholm Convention in 
201942. 

At their 14th meeting in September 2018, POPRC recommended listing PFOA, its salts and 
PFOA-related compounds in Annex A to the Convention43, including a specific exemption 
for the use of firefighting foams containing PFOA already installed in systems including 
both mobile and fixed systems subject to specific conditions. Parties to the Convention can 
register for this exemption if they: i) ensure that FFFs that contain or may contain PFOA 
shall not be exported or imported except for the purpose of environmentally sound 
disposal; ii) do not use firefighting foams that contain or may contain PFOA for training or 
testing purposes (unless all releases are contained); iii) by the end of 2022 if possible, but 
no later than 2025, restrict uses of firefighting foams that contain or may contain PFOA, to 
sites where all releases can be contained; iv) ensure all fire water, waste water, run-off, 
foam and other wastes are managed. This exemption was also agreed accordingly at the 
9th COP meeting in 201944 when listing the PFOA, its salts and related substances in the 
Annex A to the Convention. 

At its fifteenth meeting, the POPRC adopted the risk management evaluation on 
perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds and 
recommended to the Conference of the Parties that it consider listing the chemicals in 

 

40 SC-4/17 :   
41 UNEP/POPS/POPRC.14/INF/8: 
http://chm.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC14/Overview/tabid/7398/Default.as
px  
42 SC-9/4: 
http://www.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default.aspx  
43 POPRC-14/2:  
44 SC-9/12 
http://www.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default.aspx  



ANNEX XV RESTRICTION REPORT – PFAS IN FIREFIGHTING FOAMS 

 
P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | echa.europa.eu 

43 

Annex A to the Convention without specific exemptions45. The COP will decide on the listing 
of the substance at its 10th meeting in June 2022. The eventual listing under the Convention 
would enter into force one year after the date of the communication of its adoption by the 
depositary for the Convention.  

2.2.1.2. EU Regulation 

The provisions of the Stockholm Convention and the Aarhus Protocol are implemented in 
the European Union by the POPs Regulation (EC 2019/1021)46. Once the COP adopts a 
decision to amend the Annex(es) to the Stockholm Convention to list a new substance, the 
decision needs to be transposed in Union law by amending Annex I, II and/or III of the 
POPs Regulation. These amendments are done by delegated acts 

PFOS, its salts and PFOS related substances were originally restricted in the EU under 
REACH Annex XVII (entry 53). However, following the addition of PFOS, its salts and PFOSF 
to the Stockholm Convention in 2009, the entry 53 in Annex XVII to REACH was removed47 
and the substances were included under the Annex I to the POPs Regulation in 201048. 
PFOS, its salts and its derivatives are currently listed under Annex I of the POPs Regulation.  

The production, placing on the market and use of PFOS, its salts and PFOS-derivatives49 

on their own, in mixtures or in articles is severely restricted under the POPs Regulation, 
with no exemptions allowing for the use of the substance in firefighting foams50. 

PFOA and its ammonium salt have been identified under REACH as a SVHCs and included 
in the Candidate List in 2013 (ED/69/2013). PFOA, its salts and related substances were 
initially restricted under entry 68 of Annex XVII to REACH. However, following the addition 
of PFOA to the Stockholm Convention in 2019, the entry 68 in Annex XVII to REACH was 
removed51 and the substances were included under the Annex I to the POPs Regulation52. 
The production, placing on the market and use of PFOA, its salts and derivatives53 on their 
own, in mixtures or in articles is severely restricted, but a number of exemptions are 
included in the POPs Regulation, including a derogation allowing the use of PFOA, its salts 

 

45 POPRC-15/1 : 
http://www.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC15/Overview/tabid/8052/Default.a
spx  
46 http://data.europa.eu/eli/reg/2019/1021/2021-03-15  
47 http://data.europa.eu/eli/reg/2011/207/oj  
48 http://data.europa.eu/eli/reg/2010/757/oj 
49 Covering substances with the formula: C8F17SO2X (X = OH, Metal salt (O-M+), halide, amide, and other 
derivatives including polymers) 
50 Substances and mixtures containing PFOS, its salts and related substances as unintentional trace 
contaminant equal to or below 10 mg/kg are allowed to be used and placed on the market.  
51 http://data.europa.eu/eli/reg/2020/2096/oj 
52 http://data.europa.eu/eli/reg_del/2020/784/oj 
53 ‘Perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds’ means the following: 
(i) perfluorooctanoic acid, including any of its branched isomers; 
(ii) its salts; 
(iii) PFOA-related compounds which, for the purposes of the Convention, are any substances that degrade to PFOA, including 
any substances (including salts and polymers) having a linear or branched perfluoroheptyl group with the moiety (C7F15)C as 
one of the structural elements. 
The following compounds are not included as PFOA-related compounds: 
(i) C8F17-X, where X = F, Cl, Br; 
(ii) fluoropolymers that are covered by CF3[CF2]n-R’, where R’=any group, n> 16; 
(iii) perfluoroalkyl carboxylic acids (including their salts, esters, halides and anhydrides) with ≥ 8 perfluorinated carbons; 
(iv) perfluoroalkane sulfonic acids and perfluoro phosphonic acids (including their salts, esters, halides and anhydrides) with ≥ 
9 perfluorinated carbons; 
(v) perfluorooctane sulfonic acid and its derivatives (PFOS), as listed in Annex I to POPs 
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and PFOA-related compounds in firefighting foam for liquid fuel vapour suppression and 
liquid fuel fire (Class B fires) already installed in systems by 4 July 2020, including both 
mobile and fixed systems, until 4 July 2025, subject to the following conditions: 

(a) firefighting foam that contains or may contain PFOA, its salts and/or PFOA-
related compounds shall not be used for training; 

(b) firefighting foam that contains or may contain PFOA, its salts and/or PFOA-
related compounds shall not be used for testing unless all releases are contained; 

(c) as from 1 January 2023, uses of firefighting foam that contains or may contain 
PFOA, its salts and/or PFOA-related compounds shall only be allowed in sites where 
all releases can be contained; 

(d) firefighting foam stockpiles that contain or may contain PFOA, its salts and/or 
PFOA-related compounds shall be managed in accordance with Article 5 to the POPs 
Regulation.  

Perfluorohexane-1-sulphonic acid (PFHxS) and its salts, have been identified as SVHCs and 
included in the Candidate List in June 2017 (ED/30/2017). There is an ongoing restriction 
proposal for PFHxS, its salts and PFHxS-related substances54. The final RAC and SEAC 
opinion on the restriction proposal was published on 11 June 2020, which includes an 
exemption allowing the use of concentrated firefighting foam mixtures that are placed on 
the market 18 months after the entry into force of the restriction. It is expected that PFHxS, 
its salts and PFHxS-related substances will ultimately also be regulated at EU-level under 
the POPs Regulation, when its listing to the Stockholm Convention is finalised (see above).  

In December 2019, a proposal for a restriction under REACH on PFHxA was published55. 
The proposal includes certain transition periods and derogations for uses in firefighting 
foams. The proposal indicated that concentrated firefighting foam mixtures placed on the 
market until 18 months after the entry into force of the restriction could still be used in the 
production of other firefighting foam mixtures until five years after the entry into force, 
except for use of firefighting foam for training and testing (if not 100% contained). An 
exception was proposed for concentrated firefighting foam mixtures for certain defence 
applications until a successful transition to alternatives can be achieved, and for 
concentrated firefighting foam mixtures for cases of class B fires in storage tanks with a 
surface area above 500 m2 until 12 years after the entry into force. The opinion of ECHA’s 
Risk Assessment Committee and Committee for Socio-economic Analysis on this restriction 
proposal was adopted in December 2021. 

See also Annex E.1.3 for additional information on EU legislation in relation with PFASs.  

2.2.1.3. Controls in Member States and other jurisdictions 

In 2016, The Swedish Chemicals Agency (KEMI) published its strategy for reducing the use 
of PFASs (KEMI, 2016) beyond solely the implementation of EU legislation. This included 
specific measures to tackle PFASs in firefighting foams, including a proposal for national 
regulations covering, for example:  

 legal requirement for the collection and destruction of fluorine-based firefighting 
foam 

 

54 https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e1827f87da  
55 https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e18323a25d  
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 imposing reporting requirements  
 review of exemptions - with the aim of reducing the number of exemptions as much 

as possible 

In some non-EU countries, there are also regulations in place, specifically targeting PFASs 
in firefighting foams. For example, in Norway56, there are regulations in place that focus 
on the following:  

 The monitoring and screening of PFASs in the environment in general  
 The monitoring and clean-up of PFAS polluted soil caused by airport fire drills 
 A requirement for airports to monitor levels of PFASs at their fire drill sites and 

propose measures to reduce pollution 
 A requirement for airports to screen and report levels of PFASs in their soil, and 

must propose measures to reduce pollution 

In the USA, at federal level, the US EPA has developed and launched a PFASs Action Plan 
(US-EPA, 2019) to evaluate whether and how to regulate PFASs compounds under various 
federal environmental programmes (including TSCA). The primary focus of this plan is to 
reduce environmental and public health concerns when PFASs are released into the 
environment (e.g., through setting safe drinking water limits and remediation criteria). 
While the plan specifically references the use of firefighting foams as a key source of PFAS 
contamination and exposure, it does not set limits or actions specifically at national level 
for use of PFASs in foams.  

Additionally, the Fiscal Year 2020 National Defence Authorization Act (NDAA) enacted the 
phase out of the US Department of Defence’s use of PFAS-containing firefighting foam by 
October 2024 (with an exception for shipboard use). However, the Secretary of Defence 
may waive the prohibition for one year (renewable once for another year until 2026) if duly 
justified, such as the protection of life and safety or because no agent or equipment 
solutions are available that meet the military specifications. The NDAA also immediately 
prohibits the uncontrolled release of aqueous film-forming foam (AFFF) in testing and 
training, but allows emergency use or non-emergency use if completely contained (US-
NDAA, 2020). 

It should be noted that several individual US States also implement their own legislation, 
and there is a wide variety of approaches, measures, and timescales adopted. The Fire 
Fighting Foam Coalition summarised in July 2021 the main provisions of several states 
(FFFC, 2021b). As an example of some of the States with the strictest approaches57: 

 Washington bans the sale and the use for training purposes of PFAS-containing 
firefighting foams from 1 July 2020, except for terminals, oil refineries and chemical 
plants which can use them until 1st January 2024 with a possibility to apply for 
waivers that could extend until 1st January 2028. Uses required by federal law such 
as Federal Aviation Administration airports and military uses remain allowed. (US-
WA, 2018), (US-WA, 2020). 

 In California, a law was adopted in September 2020 restricting the manufacture, 
sale or use of PFAS-containing firefighting foams from 1 January 2022 except when 
required by federal law. Additional transition periods apply for certain uses, 
including for terminal and oil refineries under certain conditions (1st January 2028, 

 

56 https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/countryinformation/norway.htm 
57 See also e.g. https://www.saferstates.com/ 
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with the possibility to apply for waivers that could extend the use until 1st January 
2032) (US-CA, 2020).  

In Australia, the biggest source of concentrated emissions of PFASs is from historical use 
of PFAS-containing firefighting foams, particularly at firefighting training grounds. The 
Industrial Chemicals (Notification and Assessment) Act (ICNA Act), requires industry to 
provide toxicity data for new substances (including PFASs) or products containing new 
PFASs being introduced into Australia. Based on the level of toxicity and environmental 
persistence, the National Industrial Chemicals Notification and Assessment Scheme 
(NICNAS) recommends restrictions on how these substances can and cannot be used58. 

The Australian Department of Defence commenced phasing out its use of PFOS and PFOA-
containing firefighting foams. Furthermore, PFASs use is also limited by Air Services 
Australia, a government-owned corporation that provides air traffic control management, 
which has transitioned away from fluorinated firefighting foam to non-fluorinated 
firefighting foam including the destruction of remaining stockpiles59.  

2.2.2. Industry measures 

2.2.2.1. Substitution and phase-out  

As noted in several documents under the Stockholm Convention, for over a decade, a 
number of alternatives to the use of C8-based fluoro-surfactants (containing PFASs) in 
firefighting foams have been developed and are now widely available. These include short-
chain (C6) fluoro-surfactants, as well as fluorine-free firefighting foams; and other 
developing firefighting foam technologies that avoid the use of fluorine. 

The use of C8-based AFFF has been largely phased out in favour of these alternatives. For 
example, it is reported that the volume of AFFF-containing PFOS used in the USA declined 
from around 21 million litres in 2004 to less than 9 million litres in 2011 (Darwin, 2011). 

The POPRC officially recognises that a transition to the use of short-chain per- and 
polyfluoroalkyl substances (PFASs) for dispersive applications such as firefighting foam is 
not a suitable option from an environmental and human health point of view and that some 
time may be needed for a transition to alternatives without PFASs (POPRC-14/3).  

In the USA, in 2006, the US EPA launched the PFOA Stewardship Program following 
concerns raised about the impact of PFOA and long-chain PFASs on human health and the 
environment, including concerns about their persistence and presence in the 
environment60. The programme involved eight major companies61 committing to reducing 
PFOA from facility emissions and product content by 95 percent no later than 2010, and to 
work toward eliminating PFOA from emissions and product content no later than 2015. All 
participating companies state in the most recent progress reports, that they met the PFOA 
Stewardship Program goals62. 

 

58 https://www.oecd.org/chemicalsafety/portal-perfluorinated-
chemicals/countryinformation/australia.htm 
59 https://www.oecd.org/chemicalsafety/portal-perfluorinated-
chemicals/countryinformation/australia.htm 
60 https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-
stewardship-program 
61 Arkema, Asahi, BASF, Clariant, Daikin, 3M/Dyneon, DuPont, Solvay Solexis 
62 https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/20102015-pfoa-
stewardship-program-2014-annual-progress 



ANNEX XV RESTRICTION REPORT – PFAS IN FIREFIGHTING FOAMS 

 
P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | echa.europa.eu 

47 

2.2.2.2. Containment and control  

In Germany63, the regulatory authorities and firefighting associations have compiled a 
leaflet on PFASs in firefighting, which has reportedly resulted in an increased awareness of 
the risks associated with certain PFASs by industry, NGOs and the public. 

In Norway64 fluorine-containing firefighting foam has been substituted with fluorine-free 
alternatives in most civilian airports and fluorine-containing foam is no longer in use at 
firefighting training sites with the Norwegian defence forces. Furthermore, it is reported 
that PFASs are being gradually substituted with fluorine free-alternatives in the offshore 
sector, and the volumes of fluorine-containing foam used in this sector are decreasing.  

One respondent to the consultation questionnaire conducted by Wood (Wood et al., 2020) 
reported that the Swedish Petroleum and Biofuels Institute has previously (2011) provided 
guidance on how to plan and implement the prevention of spillage and secondary 
containment embankments, methods for emergency response, and for the assessment and 
preventing product tanks to lift off inside water filled bunds/embankments. It was 
estimated that ~80 % of the member companies were in compliance with this guidance.  

The trade association, the Fire Fighting Foam Coalition (FFFC) has published a best practice 
guidance document for the safe use of firefighting foams for Class B fires65, with the aim 
to “foster use of foam in an environmentally responsible manner so as to minimize risk 
from its use” (FFFC, 2016).  

The guidance covers the following aspects of Class B firefighting foam use: 

 Foam Selection – specifying situations where the use of Class B foams is, and is 
not, recommended, e.g. limiting the use of Class B foams to situations that present 
‘a significant flammable liquid hazard’.  

 Eliminating Foam Discharge – noting that this is not always possible in 
emergency situations, but emphasising the possibility to achieve this in training and 
the testing of foam systems and equipment.  

 Training – providing guidance on the formulation of training foams, the design, 
construction and operation of training facilities. 

 Foam System Testing – including guidance on acceptance tests, conducted 
pursuant to installation of the system; and maintenance tests (i.e. of firefighting 
vehicles).  

 Containing Foam Discharge – guidance to prevent discharge to the environment, 
both for manual and fixed systems. 

 Firewater and foam concentrate disposal – with an emphasis on incineration 
but also covering coagulation, flocculation, electro-flocculation, reverse osmosis, 
and adsorption on granular activated carbon (GAC). 

 

63 https://www.oecd.org/chemicalsafety/portal-perfluorinated-
chemicals/countryinformation/germany.htm 
64 https://www.oecd.org/chemicalsafety/portal-perfluorinated-
chemicals/countryinformation/norway.htm 
65 Covering aqueous film-forming foam (AFFF), alcohol resistant aqueous filmforming foam (AR-
AFFF), film-forming fluoroprotein foam (FFFP), alcohol resistant film-forming fluoroprotein foam 
(AR-FFFP), and fluoroprotein foam (FP, FPAR). Document available here: https://b744dc51-ddb0-
4c4a-897d-1466c1ae1265.filesusr.com/ugd/331cad_188bf72c523c46adac082278ac019a7b.pdf  
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Similarly, the Fire Protection Association Australia (FPA Australia) has published a guidance 
document on the selection and use of firefighting foams (FPA-AUS, 2020). This covers, for 
example,  

 Factors impacting on selection and use – including firefighting performance, 
environmental impact, system and equipment compatibility 

 Environmental and firefighting performance indicators 
 Fluorinated and fluorine-free firefighting foams 
 Environmental best practice - including training and system testing and 

commissioning, fire water effluent, remediation of contaminated soil and water, 
cleaning/change out of existing foams 

The consultation did not yield information on the extent to which these best practice 
measures outlined by the likes of the FFFC and FPA Australia are being implemented, or 
their effectiveness. 

2.2.3. Main restriction options assessed 

The following five main REACH restriction options (ROs) have been assessed and are 
summarised below: 

RO 1: Restriction (ban) on the placing on the market of PFAS-containing firefighting 
foams with different transitional periods per type of use. The use of legacy foams, i.e. 
foams already in stock at producers’ or users’ sites, is still permitted.  

RO 2: Restriction (ban) on the placing on the market and the use of PFAS-containing 
firefighting foams with different transitional periods per type of use. 

RO 3: Restriction on the export, placing on the market and use of PFAS-containing 
firefighting foams with different transitional periods per type of use. This restriction 
option is similar to RO 2 with the additional ban of exports of PFAS-containing 
firefighting foams at the end of the longest transitional period applicable for the placing 
on the market in the EU. 

RO 4: Restriction on the placing on the market and use of PFAS-containing firefighting 
foams with different transitional periods per type of use and the provision for a 
derogation mechanism via the local environmental permit system to which Seveso 
establishments and defence sites would be eligible. This restriction option is similar to 
RO 2, however, Seveso establishments and defence sites would not be granted a 
specific transitional period but the use on these sites would be subject to the temporary 
approval by the relevant local/national competent authorities in charge of delivering 
the operating permit to the operator, based on an assessment of the risks to human 
health, the environment and other risks such as fire risks and the efforts made to 
transition to safer alternatives.  

RO 5: Restriction of all the uses of PFAS-containing firefighting foams after a 
transitional period per type of use, unless measures to ensure full recovery and safe 
disposal of all fire run-off waters and are implemented.  

Additional details on the ROs are provided in Annex E.1.1.  
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In addition, for all the restriction options described above, additional risk management 
measures during the transitional periods have been considered, which are described in 
section 2.2.5. 

2.2.4. Other risk management options not assessed in detail 

Additional regulatory risk management options have also been considered but not assessed 
in detail for the reasons described below: 
 

a. Restriction of a few uses only, others derogated until suitable alternatives are found 
(based on reporting and restriction review) and full containment of releases 
 
The restriction would entail: 

 A ban on the use of PFAS-containing firefighting foams in training, testing 
and municipal fire services only, after a short transitional period; 

 the other uses would be allowed (derogated) until suitable alternatives are 
found 

 an annual reporting requirement would apply to the derogated firefighting 
foam users (reporting to ECHA) about their use of PFAS-containing 
firefighting foams and availability of alternatives 

 a periodic review of the restriction by the Commission would be implemented 
for the update of the derogations 

 the mandatory collection of all PFAS-containing waste and their adequate 
treatment, minimising releases of PFASs to environmental compartments. 

 

This RO is a derivative from RO 5 described above and has not been taken forward 
for the same reasons. Even though the uses where suitable alternative already exist 
would be banned, the derogated uses are likely to continue for an extensive period 
of time due to a much weaker incentive for substitution than a clearly indicated ban 
date.  

The requirement for the complete collection of firewater (i.e. also for incidents 
management) is unlikely to be technically or economically implementable in practice 
for most sectors in case of small or large fire incidents due to the type of terrain 
and infrastructures. Large sites such as airports (covering all air strips, taxi 
runways, plane waiting zones, fuel storage sites, etc.), defence training sites (being 
mostly unpaved, irregular terrains with vegetation and obstacles) or smaller sites 
such as intervention sites of municipal brigades, offshore oil platform and marine 
ships are all types of use of firefighting foams where a full capture of fire waters in 
case of a fire incident are highly unlikely.  

Regarding the annual reporting requirement of users to ECHA, this would entail the 
need for significant additional resource for ECHA in terms of IT development and 
staff time to process and analyse the data (these resource needs have not been 
quantified). The Commission would also have additional resource needs to make 
use of the collected information and regularly assess the need for ending the 
derogations. The required additional resources have not been quantified. 

b. Restriction of a few uses only, other uses would be subject to authorisation under 
REACH Title VII 

This risk management option would entail: 

 A ban on the use of PFAS-containing foams in training, testing and municipal 
fire services only, after a short transitional period; 
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 The other uses would also be banned unless they are applied for an 
authorisation under REACH Title VII Chapter 2 and the authorisation 
granted. 

This risk management option has not been taken forward in the assessment for the 
following reasons: it would require the identification of all PFASs as Substances of 
Very High Concern (many as substances of equivalent concern), inclusion in the 
Candidate List and Authorisation List which would be a cumbersome, uncertain and 
unlikely and would encompass all uses of PFASs (covered by the Authorisation title), 
i.e. not only the use in firefighting foams. In addition, the fire safety aspects for 
major accidents are already dealt with under the Seveso Directive. 

 
2.2.5. Proposed restriction option 

The proposed restriction option is RO 3: 

Restriction on the export, placing on the market and use of PFAS-containing firefighting 
foams with different transitional periods per type of use. The ban on export would apply at 
the end of the longest transitional period applicable for the placing on the market in the 
EU (i.e. ten years after entry into force of the restriction). During the transitional periods 
corresponding to each type of use, additional risk management measures described in 
section 2.8.5. would apply to minimise the emissions of PFASs in the environment as long 
as technically and economically feasible.  

This RO is considered to be the most effective in reducing the emissions of PFASs in the 
environment while providing clearly defined deadlines for transitioning to alternatives 
without compromising fire safety. The transitional periods are adapted to each type or 
sector of use based on the availability of suitable alternatives and provide a clear signal to 
manufacturers to invest in the development of alternatives for all types of uses and a clear 
signal to users in starting to implement the transition by testing the alternatives and – 
where needed- making the technical and organisational adaptations. 

The ban on exports after the longest transitional period would allow a further reduction of 
emissions from the foam formulation and storage taking place in the EU. In addition, this 
approach is in line with the EU Chemicals Strategy for Sustainability which states that “The 
EU will […] lead by example, and, in line with international commitments, ensure that 
hazardous chemicals banned in the European Union are not produced for export, including 
by amending relevant legislation if and as needed”66. This approach is particularly relevant 
for PFAS considering their persistence and their potential for long range transport. 

The detailed restriction conditions are the following: 

Restriction on the export, placing on the market and use of PFASs in firefighting foams. 

 

66 Communication from the Commission to the European Parliament, the Council, the European 
Economic and Social Committee and the Committee of the Regions - Chemicals Strategy for 
Sustainability  - Towards a Toxic-Free Environment - COM(2020) 667 final, 2020, available at 
https://eur-lex.europa.eu/resource.html?uri=cellar:f815479a-0f01-11eb-bc07-
01aa75ed71a1.0003.02/DOC_1&format=PDF  
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Column 1 Column 2 

Per- and polyfluoroalkyl 
substances (PFASs) defined 
as: any substance that 
contains at least one fully 
fluorinated methyl (CF3) or 
methylene (CF2) carbon 
atom (without any 
H/Cl/Br/I attached to it). 

[The ancillary requirement 
in paragraph 7 of column 2 
of this entry applies to all 
firefighting foams, whether 
or not they contain a 
substance falling within this 
column of this entry.] 

1. Shall not be placed on the market or exported as 
substances on their own, as a constituent in other 
substances or in mixtures for use in firefighting foam 
concentrates where the concentration of total PFASs 
is greater than 1 ppm67 10 years after entry into force. 

2. Shall not be used on their own, as a constituent in 
other substances or in mixtures in firefighting foam 
concentrates where the concentration of total PFASs 
is greater than 1 ppm. 

3. Paragraph 2 shall apply from: 

a. 18 months after entry into force for training 
and testing (except testing of the firefighting 
systems for their function); 

b. 18 months after entry into force for municipal 
fire services (except if also in charge of 
industrial fires for establishments covered by 
Directive 2012/18/EU (Seveso III) and for 
use in these establishments only); 

c. three years after entry into force for civilian 
ships;  

d. five years after entry into force for portable 
fire extinguishers as defined by EN3-7; 

e. 10 years after entry into force for 
establishments covered by the Directive 
2012/18/EU (Seveso III)68 (upper and lower 
tiers); 

f. five years after entry into force for all other 
uses not covered by paragraphs 3(a), 3(b) 
3(c), 3(d) and 3(e). 

4. Without prejudice to paragraph 3, six months after 
entry into force users of firefighting foam 
concentrates where the concentration of total 
PFASs is greater than 1 ppm shall: 

a. ensure that firefighting foam concentrates are 
only used for fires involving flammable liquids 
(class B fires);  

b. minimise emissions to the environment and 
direct and indirect exposures to humans of 
firefighting foams to the extent that is 
technically and economically feasible.  

 

67 Corresponding to 1 000 ppb, or 0.0001% (w/v). 
68 Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the 
control of major-accident hazards involving dangerous substances. 
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Column 1 Column 2 

c. establish a site-specific ‘PFAS-containing 
firefighting foams management plan’ which 
shall include: 

i. a justification for the use of each 
firefighting foam concentrate where the 
concentration of total PFASs is greater 
than 1 ppm (including an assessment of 
the technical and economic feasibility of 
alternatives). 

ii. details of the conditions of use and 
disposal of each PFAS-containing foam 
used on site specifying how paragraph 
4(b) is achieved (including plans for the 
containment, treatment and 
appropriate disposal of liquid and solid 
wastes arising in the event of foam use, 
routine cleaning and maintenance of 
equipment or in the event of accidental 
leakage/spillage of foam).  

iii. The management plan shall be reviewed 
at least annually and be kept available 
for inspection by enforcement 
authorities on request. 

d. Ensure that the collected PFAS-containing 
waste with a concentration of PFASs above 
the one mentioned in paragraph 2 shall be 
handled for adequate treatment. The 
treatment shall minimise releases of PFASs to 
environmental compartments as far as 
technically and practically possible and shall 
exclude municipal wastewater treatment, 
irrespective of any pre-treatment. For each 
event of foam use or accidental spillage or 
leakage, proof of appropriate management 
and disposal of the foam concentrates, water-
added foams and fire run-off waters shall be 
documented and kept available for 
enforcement authorities. 

5. From six month after entry into force, firefighting 
foam concentrates containing PFASs above the 
threshold indicated in paragraph 1 which are held 
in stock and need to be disposed of shall be handled 
for adequate treatment. The treatment shall 
minimise releases of PFASs to environmental 
compartments as far as technically and practically 
possible and excluding any wastewater treatment, 
irrespective of any pre-treatment. Proof of 
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Column 1 Column 2 

appropriate disposal shall be documented and kept 
available for enforcement authorities.   

6. From six months after entry into force, packaging 
of firefighting foam concentrates placed on the 
market or used, containers of firewater runoffs or 
other PFAS-waste in relation with the use of 
firefighting foams or the cleaning of firefighting 
foam equipment in concentrations above the one 
mentioned in paragraph 1 shall be labelled 
indicating the presence of PFASs above this 
threshold with the following wording: “WARNING: 
Contains per and polyfluoroalkyl substances 
(PFASs)”. This information shall be displayed in a 
clear and visible manner in the official language(s) 
of the Member State(s) where the firefighting foam 
concentrate is placed on the market, unless the 
Member State(s) concerned provide(s) otherwise. 

7. [From six months after entry into force, packaging 
of firefighting foam concentrates placed on the 
market containing organofluorine substances 
above 1 ppm, but where the concentration of total 
PFASs is not greater than 1 ppm, shall be labelled: 
“Contains non-PFAS organofluorine substances 
with a total organofluorine concentration of (insert 
concentration) ppm”. This information shall be 
displayed in a clear and visible manner in the official 
language(s) of the Member State(s) where the 
firefighting foam concentrate is placed on the 
market, unless the Member State(s) concerned 
provide(s) otherwise.] 

 

The restriction entry does not prescribe any specific disposal method. Based on the 
collected information, the disposal of PFAS-containing waste in hazardous waste incinerator 
and cement kilns are currently considered as best available techniques. However, the 
Dossier Submitter underlines the fact that few field studies on the fate and emissions of 
PFASs resulting from these disposal techniques are available and calls for more research 
in the field to confirm the effectiveness of the destruction of PFASs. Other, new disposal 
techniques are also being developed but their effectiveness and applicability at industrial 
scale needs to be demonstrated. 

Explanatory notes:  

(1) “Testing of the firefighting systems for their function” means testing the fire protection 
system in the same way as it would operate in case of emergency. Other types of 
testing include but are not limited to: testing of foam agents during their development 
phase, testing of foam agents by users to evaluate products’ suitability on specific 
combustibles, testing of correct proportioning of firefighting foam concentrates. 

(2) Municipal fire services (i.e. local authority fire and rescue services) are covered under 
the restriction entry 3 (b.), except if they are also in charge of industrial fires for 
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establishments covered by the Seveso-III Directive and for use in these establishments 
only. In this case, the transitional period of paragraph 3(e) applies. 

(3) Other uses of firefighting foams include – but are not limited to -: civilian aviation, 
defence, aerospace, offshore oil/gas/chemical facilities, onshore oil/gas/chemical 
manufacturing or processing facilities which are not coved by paragraph a. (Seveso 
establishments), power plants, glass manufacturers, waste treatment facilities, food 
processing industry, metal processing, etc. 

(4) The use of PFAS-containing foam agents in portable fire extinguishers are covered by 
paragraph 3(d), with a proposed transitional period of five years, irrespective of the 
sector of use, i.e. their use would be continued to be allowed during this period even 
if the sector where they are used is subject to a shorter transitional periods (e.g. 
ships). 

(5) “Civilian ships” refers to marine and non-marine civilian ships. 

(6) Foam concentrates are the foam formulations purchased by the users and which are 
further mixed with water at the moment of the use. Water-added foams are the foam 
concentrates mixed with water at the moment of the use. Fire run-off waters (or 
“firewater runoff”) are the run-off waters containing the firefighting foam concentrate 
mixed with water and all other elements mixed with them during the use of the 
firefighting foam during a fire incident, training or other use (e.g. flammable liquids, 
dirt, etc). 

(7) The labelling of the containers containing PFASs above the threshold indicated in 
paragraph 1 aims at facilitating the identification and handling of the PFAS-containing 
foam concentrates, firewater runoff and waste. 

(8) Placing on the market after 10 years is banned as the use is not allowed in any of the 
sectors or uses anymore at that time. 

(9) The ancillary requirement detailed in paragraph 7 is intended to facilitate the 
enforcement of the proposed restriction by means of ‘total fluorine’ analytical methods, 
rather than targeted analysis of specific PFAS. The utility of this requirement shall be 
reviewed after the consultation on the Annex XV report. 

2.3. Overview of impacts 

Under RO 1, manufacturers and importers will be allowed to place PFAS-containing foam 
concentrates on the market for specific types of uses and sectors until the end of the 
specific transitional periods. The manufacture for export would still be allowed without time 
limit. Users of PFAS-containing foams will be allowed to use the PFAS-containing foams 
concentrates as long as they have them in stock but will not be able to make additional 
purchases after the end of the transitional period corresponding to the use concerned. A 
progressive reduction in the use of PFAS-containing foams is expected with a concomitant 
progressive increase of the use of the fluorine-free alternatives. Since continued use is 
allowed, the restriction would not lead to early disposal of PFAS-containing foam 
concentrates (i.e. the PFAS-containing foams would be used until the end of their shelf 
life). Users would benefit from extended periods to transition to alternatives. Six months 
after the entry into force of the restriction, additional risk management measures would 
apply that aim to reduce the amounts of PFAS-containing foams used and at collecting the 
firewater runoff and other PFAS waste to the extent that is technically and economically 
feasible.  

Under RO 2, manufacturers and importers will be allowed to place PFAS-containing foam 
concentrates on the market during ten years and users will be allowed to use these foams 
until the end of the transitional periods corresponding to their sector/type of use, after 
which the safe disposal of the remaining PFAS-foam stocks will be required. The 
manufacture for export would still be allowed without time limit. During the transitional 
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periods, the required further testing of alternatives and adaptation of firefighting foam 
equipment will take place progressively to ensure transition by the end of the transitional 
period. Similarly to RO 1, six months after the entry into force of the restriction, additional 
risk management measures would apply that aim to reduce the amounts of PFAS-
containing foams used and at collecting the firewater runoff and other PFASs waste to the 
extent that is technically and economically feasible.  

RO 3 is similar to RO 2 but with an additional ban of the manufacture for export after ten 
years (longest transitional period of the use/sector-specific transitional periods). Emissions 
of PFASs from the formulation stage in the EU would stop after the ban manufacturers 
would incur surplus losses. 

RO 4 bans the use in a similar way as RO 2 with the exception that use of PFAS-containing 
foams at Seveso establishments and defence sites would not be assigned a transitional 
period. Instead, to be able to continue using PFAS-containing foams after the entry into 
force of the restriction, these establishments and sites would be required to apply for it via 
the local/national competent authorities that deliver operating permits. The Dossier 
Submitters considers that the incentive for substitution for these sectors is much weaker 
under this RO and assumes that most of these users would apply for a continued use and 
be granted an authorisation for a total period of ten years (expected time for a transition 
to alternatives for the Seveso establishments), and that the progressive transition would 
actually only take place after this period of ten years. In other words, a relative steady-
state use of PFAS-containing foams in these sectors would be observed during ten years, 
followed by a linear decline until a full transition 20 years after the entry into force of the 
restriction. Users other than at Seveso establishments and defence sites would follow the 
same transition pattern as envisaged under RO 2. The same requirement for risk 
management measures as in RO 2 would apply for all types of uses and exports would 
similarly be allowed without time limit. 

RO 5 bans the use in a similar way as RO 2 with use/sector-specific transitional periods, 
however, users able to demonstrate a minimisation of the emissions of PFASs would be 
allowed to continue using PFAS-containing foams without time limit. In practice, the 
Dossier Submitter assumes that only Seveso establishments would possibly be able to 
meet this requirement and that most of them would take advantage of this allowed 
continued use for at least the assessment period considered in this restriction proposal (30 
years after entry into force). This would result in lower but continued emissions of PFASs 
since risk management measures in the context of firefighting are unlikely to be 100% 
effective. The users not being able to meet the requirement for a minimisation of the 
emissions of PFASs would need to transition to fluorine-free alternatives in the same 
pattern as RMO 2 and with the same requirement during the transitional period to apply 
the risk management measures to the extent technically and economically feasible. Exports 
would be allowed without time limit. 

The two figures below summarise the main effects (i.e. anticipated responses from the 
supply chains along with associated impacts) resulting from the different risk management 
options.  

The impacts of these ROs are analysed in detail in Annex E, Sections E.4, E.5 and E.6. 
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Figure 6. Schematic summarising potential effects of a restriction on the placing on the market of PFAS-containing firefighting 
foams (RO 1) 
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Figure 7. Schematic summarising potential effects of a restriction on the use /placing on the market of PFAS-containing 
firefighting foams (RO 2, 3, 4 and 5) 
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2.4. Economic impacts 

The proposed transitional periods are set to allow the development of fluorine-free firefighting 
foams and the adaptation of existing firefighting systems while providing a similar level of fire 
protection as under the use of PFAS-containing foams. For this reason, specific transition 
periods by application and use sector are proposed (see Table 3 and justifications in section 
2.8.2) and these are reflected in the estimated costs for each use/sector. 

Table 3. Proposed transitional periods for the restriction per sector/type of use 

Sector/type of use or 
placing on the market 

Transitional period from the entry into 
force 

Seveso establishments 10 years 

Other industries 5 years 

Civilian aviation 5 years 

Defence 5 years 

Municipal fire services 18 months 

Ready-to-use applications 5 years 

Marine applications 3 years 

Training and testing 18 months 
Export 10 years 

 

The following cost categories were monetised in the assessment of economic impacts: 

 Cost of using alternative foams: 

This cost element considers the difference in prices between PFAS-containing and 
fluorine-free foams, and additional volumes of fluorine-free foams needed to achieve 
the same level of fire protection. 

 Depreciation of existing stocks:  

For ROs restricting the use of firefighting foams already in stock, the lost value of the 
foams is estimated. 

 Cost of technical changes needed to adapt equipment for the use of alternative foams: 

Technical changes are needed to use fluorine-free foams, e.g. changes in firefighting 
nozzles, heavy duty applicators, specialist equipment and mobile foam units.  

 Incineration/disposal costs of PFAS-containing foams: 

This category could potentially represent both costs and savings. If use of existing 
foams is banned, these foams would have to be disposed of safely introducing costs 
to the industry. On the contrary, alternative foams do not require incineration if they 
expire. As the assumptions made in the analysis imply that existing foam would be 
used before it expires (in 15 years), only the cost of incinerating existing foam stocks 
(for ROs with use ban) is considered. 

 Savings resulting from avoided clean-up: 

Savings for some users may occur in the case of avoided clean-up of contaminated 
land after a fire incident. Clean-up is considered to result from recent activity which is 
often still ongoing at the site. This is different from remediation which is carried out 
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due to historical activities (see Annex E.4.3 for further information on clean-up and 
remediation).  

 Cost of cleaning equipment to comply with the proposed concentration threshold: 

To comply with the proposed concentration limits, firefighting equipment needs to be 
cleaned to avoid residual amounts of PFASs in the fluorine-free foams. 

 Cost of additional RMMs for training/testing and incidents: 

The ROs contain a requirement to safely use PFAS-containing foams during the 
transitional periods. This could include collection and disposal of fire water run-off. 

 Producer surplus loss due to export ban (only for RO3): 

Producers of PFAS-containing foams lose profits if not being allowed to sell their 
products to non-EEA countries. No producer surplus changes are calculated for the 
sales within the EEA. This is because quantities of alternative foams produced and sold 
in the EEA are considered to increase due to the need to maintain the same level of 
fire protection. Furthermore, possible changes in production costs are already covered 
by the price element in the calculation of cost of using alternative foams.   

 Cost of full containment of the foams (only for RO5): 

RO 5 allows continued use of PFAS-containing foams if the releases are minimised. 
This would require technical adaptations to achieve full containment. 

A more detailed description of the cost categories and how they have been estimated is 
provided in Annex E.4. Sector-specific unit costs are used for monetising technical changes 
needed to use alternative foams and the cleaning of existing equipment.  

There are also significant savings in terms of reduced remediation of contaminated sites. 
However, these have been considered as part of the benefits of the proposed restriction as 
described in the benefit and proportionality assessment in section 2.8.  

Furthermore, large savings resulting from avoided contamination of drinking water resources 
can also be expected to benefit drinking water suppliers. Based on section 1.1.4, release 
reduction would avoid extensive drinking water contamination and thereby considerable costs 
of development and implementation of efficient drinking water purification techniques. These 
(unquantified) savings are also considered as part of the benefits assessment (section 2.8). 

Table 4 summarises the estimated economic impacts for each RO and each cost category.  

Table 4. Estimated economic impacts for each RO and cost category 

Cost category 
RO1 

(NPV € over 30 
years) 

RO2 
(NPV € over 30 

years) 

RO3 
(NPV € over 30 

years) 

RO4 
(NPV € over 30 

years) 

RO5 
(NPV € over 30 

years) 

Cleaning of 
equipment 

2.0 billion 
(1 to 4 billion) 

2.5 billion 
(1 to 5 billion) 

2.5 billion 
(1 to 5 billion) 

2.1 billion 
(1 to 4 billion) 

1.2 billion 
(0.6 to 2.4 billion) 

Technical changes 
needed 

3.5 billion 
(2 to 11 
billion) 

3.5 billion 
(2 to 11 
billion) 

3.5 billion 
(2 to 11 
billion) 

2.6 billion 
(1 to 8 billion) 

300 million 
(150 to 900 

million) 

Disposal / 
incineration of 
foams 

0 
110 million 
(100 to 140 

million) 

110 million 
(100 to 150 

million) 

61 million 
(55 to 80 
million) 

67 million 
(60 to 80 million) 
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Depreciation of 
stocks disposed 

0 
170 million 
(150 to 200 

million) 

170 million 
(150 to 200 

million) 

92 million 
(80 to 120 

million) 

100 million 
(90 to 130 million) 

Cost of alternative 
foams 

260 million 
(-60 to 700 

million) 

480 million 
(-0.1 to 1 

billion) 

480 million 
(-0.1 to 1 

billion) 

330 million 
(-80 to 900 

million) 

300 million 
(-70 to 800 

million) 

Savings due to 
avoided clean-up 

73 million 
(100 to 40 

million) 

 
120 million 
(240 to 60 

million) 

 
120 million 
(240 to 60 

million) 

91 million 
(50 to 180 

million) 

78 million 
(40 to 150 million) 

Cost of export ban 
(producer surplus) 

not applicable not applicable 
8 million 
(4 to 24 
million) 

not applicable not applicable 

Cost of additional 
RMMs for 
training/testing 
and incidents 

96 million 
(60 to 200 

million) 

60 million 
(30 to 120 

million) 

60 million 
(30 to 120 

million) 

105 million 
(50 to 200 

million) 

59 million 
(30 to 120 million) 

Cost of full 
containment 

not applicable not applicable not applicable not applicable 13 billion 
(6 to 40 billion) 

SUM 
5.9 billion 
(3 to 16 
billion) 

6.8 billion 
(3 to 17 
billion) 

6.8 billion 
(3 to 17 
billion) 

5.2 billion 
(2 to 13 
billion) 

15 billion 
(7 to 40 billion) 

 

The proposed restriction includes a requirement to use PFAS-containing foams safely during 
the transition periods by applying sector-specific best practices to the extent that these are 
technically and economically feasible. In the absence of information on the actual measures 
that are feasible in different sectors and for different users, the Dossier Submitter estimated 
these costs based on the disposal costs of PFAS-containing foams used for training and 
incidents. The additional cost of this requirement is presented in Table 4 under the cost 
category ‘Cost of additional RMMs for training/testing and incidents’. This requirement is 
estimated to cost €30 to €200 million (NPV over 30 years). 

The results suggest that the most significant cost categories are related to technical changes 
needed to use alternative foams followed by the costs of cleaning equipment. These are also 
the cost elements that are based on sector-specific assumptions about unit costs (see section 
3 on assumptions and Annex E.4). 

Table 5 presents the impacts per affected industrial sector. 

Table 5. Estimated economic impacts for each RO and industrial sector 

Sector/type of use 
RO1 

(NPV € over 30 
years) 

RO2 
(NPV € over 30 

years) 

RO3 
(NPV € over 30 

years) 

RO4 
(NPV € over 30 

years) 

RO5 
(NPV € over 
30 years) 

Seveso 
establishments 

4.5 billion 
2 to 12 billion 

4.9 billion 
(2 to 13 billion) 

4.9 billion 
(2 to 13 billion) 

3.3 billion 
(2 to 9 billion) 

13 billion 
(7 to 40 
billion) 

Other industries 20 million 
6 to 50 million 

27 million 
(9 to 60 
million) 

27 million 
(9 to 60 
million) 

27 million 
(9 to 60 
million) 

27 million 
(9 to 60 
million) 
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Civilian aviation 
38 million 
0* to 100 

million 

70 million 
(6 to 160 
million) 

70 million 
(6 to 160 
million) 

70 million 
(6 to 160 
million) 

70 million 
(6 to 160 
million) 

Defence 
25 million 

0* to 65 million 

45 million 
(3 to 100 
million) 

45 million 
(3 to 100 
million) 

15 million 
(0.4 to 40 
million) 

45 million 
(3 to 100 
million) 

Municipal fire 
services 

980 million 
0.5 to 2 billion 

1.2 billion 
(0.6 to 3 
billion) 

1.2 billion 
(0.6 to 3 
billion) 

1.2 billion 
(0.6 to 3 
billion) 

1.2 billion 
(0.6 to 3 
billion) 

Ready-to-use 
applications 

2.5 million 
0* to 8 million 

7 million 
(0* to 15 
million) 

7 million 
(0* to 15 
million) 

7 million 
(0* to 15 
million) 

7 million 
(0* to 15 
million) 

Marine applications 
300 million 
100 to 700 

million 

390 million 
(150 to 900 

million) 

390 million 
(150 to 900 

million) 

390 million 
(150 to 900 

million) 

390 million 
(150 to 900 

million) 

Training and testing 
35 million 
0* to 100 

million 

130 million 
(0* to 310 

million) 

130 million 
(0* to 310 

million) 

130 million 
(0* to 310 

million) 

130 million 
(0* to 310 

million) 

SUM 
5.9 billion 
(3 to 16 
billion) 

6.8 billion 
(3 to 17 
billion) 

6.8 billion 
(3 to 17 
billion) 

5.2 billion 
(2 to 13 
billion) 

15 billion 
(7 to 40 
billion) 

* For some sectors the analysis suggests negative costs based on lower bound estimates. This is because of the 
assumption made for the prices of PFAS-containing and PFAS-free foams and the potential savings from avoided 
clean-up. This does not seem to be a plausible outcome and for these sectors the lower bound costs are reported as 
zero in the table. 

The costs presented in Table 5 show that the highest economic impacts are expected for 
Seveso establishments. This is due to high quantities of firefighting foams used in this sector 
as well as more expensive technical changes needed to maintain the same level of fire safety 
when using alternative foams.  

The cost analysis results in the following key results. RO1 describes a ban on placing on the 
market of PFAS-containing foams with an estimated cost of €5.9 billion (ranging between €3 
and €16 billion) (NPV over 30 years). RO2 additionally bans the use of foams already placed 
on the market but not yet used. In comparison to RO1, the additional cost to cover this use 
is estimated to be €0.9 billion (ranging between €0.4 and €1.7 billion) (NPV over 30 years). 
RO3 further bans the export of PFAS-containing foams after a transition period of 10 years. 
The additional cost to cover exports as compared to RO2 is estimated to be €8 million (ranging 
between €4 and to €24 million) (NPV over 30 years). As expected, the total costs for RO4 are 
lower than for RO3 because some industry sectors (Seveso establishments and defence) 
would benefit from a permit system and could continue using PFAS-containing foams for a 
longer time. The significantly higher estimated costs for RO5 reflect the technical challenges 
necessary to achieve full containment.  
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2.5. Human health and environmental impacts 

All PFASs are very persistent in the environment. Many PFASs are likely to persist in the 
environment longer than any other man-made organic substance. As a consequence, if 
releases are not minimised, humans and other organisms will be exposed to progressively 
increasing amounts of PFASs until such levels are reached where effects are likely. In such 
an event the exposures are practically irreversible. Even if further releases of PFASs were 
immediately prevented, existing environmental stocks would continue to be a source of 
exposure for generations. There are several additional concerns arising from the use of PFASs, 
e.g., that a ubiquitous contamination of drinking water resources is unavoidable unless 
releases are minimised. Human exposures occur efficiently via all environmental exposure 
routes and cannot be avoided or mitigated. Some PFASs can accumulate in plants, others 
have bioaccumulation potential in biota and humans. Exposures are also transmitted 
effectively to unborn and breastfeeding children. Humans and biota are exposed to a complex 
mixture of PFASs and combined effects are likely. For further details, see section 1.1.4 and 
section 1.1.6. 

Use of PFASs in firefighting foams is substantially contributing to long-term general human 
and environmental exposures of PFASs besides other uses. The proposed restriction is 
providing a partial solution to the need to prevent the increase of general PFAS-exposures. 
However, specific to the use of PFASs in firefighting foams, the potential to contaminate local 
environments, where firefighting, equipment maintenance and training take place, is high 
(see Annex C.4.3). The proposed restriction directly prevents such contaminated sites to be 
formed in future.  

The environmental persistence of the assessed non-fluorinated alternatives is considerably 
lower than that of PFAS compounds. 

It is not possible to quantify the human health and environmental impacts of avoided releases. 
Following the SEAC approach for evaluating PBT and vPvB cases, the avoided released 
quantities of PFASs are used as a proxy of the environmental and human health risks, and 
thus of human health and environmental impacts of the proposed restriction.  

The evolution of emissions of PFASs to the environment over a 30-year assessment period 
was estimated in Excel for each of the five RO scenarios, maintaining the following main 
assumptions: 

 RO1: ban on placing on the market after a transitional period per type of use or sector 
but use allowed until depletion of stocks; 

 RO2: ban on placing on the market after ten years and use banned after transitional 
periods per type of use or sector;  

 RO3: same as RMO2 but in addition, taking into account the emissions from 
formulation for export which are banned after a transitional period of ten years; 

 RO4: ban on use after sector/use-specific transitional periods, considering a 
progressive decline of oil/chemical (Seveso establishments) and defence uses after ten 
years to simulate the effect of a gradual substitution in these sectors due to the 
pressure induced by the permit system; 

 RO5: ban on use after sector/use-specific transitional periods, considering that only 
the Seveso establishments would be able to meet the requirement for full containment 
after the transitional periods, i.e. considering that all uses would stop after their 
respective transitional period, except Seveso establishment which would continue 
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using PFAS-containing foams at the same level during the entire assessment period of 
30 years. 

The risk management measures described in the proposed restriction entry have been 
considered in the emission modelling for all ROs.  

As for the baseline, using a source-flow model and several assumptions that are outlined in 
section 3, in Annex E.5.2 and in Appendix 8 the material flow and emissions per environmental 
compartments occurring at the different life cycle steps have been calculated for each RO.  

In addition, as sensitivity analysis, “Best”, “Low” and “High” estimates scenarios were 
calculated for each ROs using different values for several input parameters (see section 3). 

Compared to the baseline, additional risk management measures are proposed in the five 
ROs to reduce the emissions of PFASs from the continued used during the transitional periods. 
Among them, all ROs foresee the collection of all PFAS releases, especially those originating 
from the use of the firefighting foam in training, testing and live incidents. The safe disposal 
of remaining stock of firefighting foam concentrates after the end of the transitional periods 
is also foreseen under certain ROs. Figure 8 schematically describes the emissions expected 
from the in-use phase under the five RMOs. The emission modelling takes these emission 
sources into account.  
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Figure 8. Material flow diagram for the life cycle stages training and incidents, 
including RMMs as foreseen in all the ROs. 

Avoided emissions under the different ROs 

For each RO, total avoided emissions of PFASs in the environment over 30 years, compared 
to the baseline have been calculated. To illustrate the impact of the additional risk 
management measures proposed under each RO (reduction of emissions as technically and 
economically feasible, i.e. maximisation of collection and safe disposal for training/testing and 
incidents), in additional to the progressive phase out, simulations have also been done with 
and without these risk management measures. These are summarised in Table 6 below and 
documented in Annex section B.9. 

Table 6. Total avoided PFAS emissions over 30 years, compared to the baseline, 
using the best estimate scenarios (low and high scenario in brackets), with and 
without (t PFASs, figures rounded) 
RO Total avoided PFAS emissions 

over 30 years, with risk 
management measures 
 (t PFASs) 

Total avoided PFAS emissions 
over 30 years, without risk 
management measures  
(t PFASs) 

RO1 11 800 

(7 600 – 15 000) 

7 900 

(5 300 – 10 500) 

RO2 13 000 

(8 000 – 16 600) 

11 200 

(6 900 – 14 900) 

RO3 13 200 

(8 000 – 16 800) 

11 300 

(7 000 – 15 000) 

RO4 12 600 8 800 
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(7 900 – 14 500) (5 500 – 12 500) 

RO5 12 500 

(7 900 – 14 400) 

6 700 

(4 500 – 8 900) 
Note: Baseline emissions of PFASs over 30 years are estimated at 14 100 tonnes in the EU.  

RO3 is the RO which is calculated to lead to the greatest PFAS emissions reduction, up to 
13 200 tonnes over 30 years. In contrast, RO1 is the RO which leads to the smallest emissions 
reduction with around 11 800 tonnes. The calculations also show the large impact of the 
proposed additional risk management measures on the emission reductions. 

The evolution of the emissions over the assessment period for each RO with and without 
RMMs, for each sector/type of use has been modelled and the results presented in Annex 
E.5.2 and in Appendix 8. 

Table 7 summarises the best estimates of the avoided emissions for each RO per sector/type 
of use. These are used to estimate the cost-effectiveness ratios in the proportionality section. 
Estimations of the low and high emissions scenarios and the evolution of annual and 
cumulative emissions (over the assessment period) of PFASs in the environment under the 
main ROs and with different transitional periods per type of use are presented in annex section 
F.5.2 and in Appendix 8. Estimates of cumulative emissions to the environment should not be 
interpreted strictly as equivalent to environmental stocks. This is due to the large 
uncertainties in predicting future exposures for PFASs, as concluded in section 0.  

Table 7. Estimated avoided emissions of PFASs (best estimate) for each RO and 
sector or type of use, compared to the baseline  

Sector/type of use 

RO1 
(tonnes 

over 
30 years) 

RO2 
(tonnes over 

30 years) 

RO3 
(tonnes over 

30 years) 

RO4 
(tonnes over 

30 years) 

RO5 
(tonnes 

over 
30 years) 

Seveso 
establishments 6087 6232 6281 5966 5653 

Other industries 128 131 132 131 131 

Civilian aviation 810 940 950 940 940 

Defence 540 627 633 440 627 

Municipal fire 
services 1095 1473 1489 1473 1473 

Ready-to-use 
applications 84 117 118 117 117 

Marine applications 939 1266 1280 1266 1266 

Training and testing 2129 2244 2269 2244 2244 
All sectors 
(rounded 
numbers) 11 800 13 000 13 200 12 600 12 500 

Notes:  
(1) Baseline emissions of PFASs over 30 years are estimated at 14 100 tonnes in the EU.  
(2) Except where indicated, the results are not rounded to show the difference in the risk reduction 
capacity of different restriction options (i.e. avoided emissions). This should not be interpreted as 
suggesting accuracy in the results. 
 

The modelling used suggests that RO1 results in reduced emissions of around 11 800 tonnes 
over 30 years. By restricting the use of the foams already placed on the market (RO 2) 
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additional releases of around 1 200 tonnes could be avoided. RO3 would also restrict the 
export of foams and provide additional release reduction of around 120 tonnes (based on 
more exact figures that reported above in the table). As could be expected, the avoided 
releases estimated for RO4 and RO5 are lower than for the proposed RO3 as industry would 
continue using the PFAS-containing foams for longer. The highest release reduction is 
achieved in the sector with highest use volumes, i.e. in the SEVESO establishments. As all 
the quantities used for training/testing and fire incidents are assumed in the emission 
calculations to be ultimately released in the environment, the only difference in release profile 
between the industrial sectors or type of use is related to the efficiency of the RMMs when 
using PFAS-containing foams during the transition periods. 

The proposed transitional periods are set to allow the development of fluorine-free firefighting 
foams, their testing by the users and the adaptation of the existing firefighting systems to 
provide similar level of fire protection as PFAS-containing foams. This is to exclude the 
possibility for fire safety risks that could have human health or environmental impacts. This 
is an important starting point as the Dossier Submitter has not estimated the human health 
and environmental costs of increased fire damage. 

During the transition periods, additional risk management measures are proposed to minimise 
the emissions of PFASs in the environment. These RMMs are estimated to reduce releases by 
around 2 000 to 6 000 tonnes over 30 years depending on the RO. The higher end estimate 
is for the RO allowing the use of PFAS-containing foams for longer, i.e. RO5. 

One of the measures to achieve minimised emissions is the safe disposal of PFAS-containing 
waste. The exposure assessment assumes incineration as disposal method to estimate the 
emissions to the environment from disposal. However, it is noted that the nature and 
quantities of emissions of PFASs or other fluorinated substances resulting from these disposal 
processes are not well known and further research should be carried out in real industrial 
conditions to ascertain their efficiency. Also, the impact on the emissions of greenhouse gases 
has not been calculated. 

The human health and environmental risks of fluorine-free foams are considered lower than 
when using PFAS-containing foams, even if required quantities are greater. The Clean 
Production Action organisation developed hazard assessment standards for firefighting foams 
under the GreenScreen® methodology69 and several foam products assessed have been 
attributed bronze and silver level scores70. Besides these, alternatives based on siloxanes 
have been identified to be available on the market. However, it should be highlighted that 
there are concerns related to the PBT and/or vPvB properties of some siloxanes: cyclic D4, 
D5, D6 have been identified as substances of very high concern under REACH based on these 
endpoints and others (linear) are currently undergoing PBT-assessment (e.g. 
octamethyltrisiloxane). Furthermore, D4, D5, D6 are subject to an ongoing restriction process 
that would not allow their use in firefighting foams if adopted. The restriction is subject to 
decision making. For this reason, alternatives based on siloxanes have not been assessed 
further in this report (see Annex E.2 on risks and technical feasibility of alternatives).  

The Dossier Submitter highlights the importance for manufacturers of alternatives to PFAS-
containing foams to assess the overall human health and environmental safety profile of their 
products according to recognised methodologies. 

 

69 https://www.greenscreenchemicals.org/certified/fff-standard  
70 https://www.greenscreenchemicals.org/certified/products  
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As noted in section 2.4 and 2.8, one expected impact of the reduced releases will be the 
avoided need for developing and implementing more appropriate drinking water purification 
techniques across the European drinking water suppliers. Although some of the current high-
end techniques may clean PFASs from raw water to some extent (see section B.4.5 for details 
and a briefing note of EUREAU (2021), costs of implementation would be expected to be very 
large in case releases and hence increase of drinking water resource contamination would not 
be prevented. It should be noted, however, that for such costs PFAS-containing firefighting 
foams are only one substantial use among several (see, e.g., for preliminary proportions the 
restriction proposal of PFHxA, its salts and related substances; ECHA, 2022). 

Similar to above, but directly targetable to the use of PFASs in firefighting foams is the avoided 
need to change drinking water supply in future. It is currently expected that the immediate 
clean-up methods would not be sufficiently effective to clean up or remediate 
soil/groundwater contamination after firefighting in non-bunded areas (see discussion in 
Annex B.4.5 (see also the example in Table F.14 in Annexes to the proposal and Annex 
E.4.3.5). 

2.6. Other impacts 

The Dossier Submitter has not identified any other significant impacts (e.g. on employment 
or trade) resulting from the proposed restriction. This is because many producers of 
firefighting foams manufacture both PFAS-containing and PFAS-free foams, sufficient time is 
provided to develop suitable alternatives (if not available already), and because export is 
proposed to be allowed until alternatives are available for all uses and industrial sectors. See 
Annex E.6 for a brief analysis.  

2.7. Practicality and monitorability  

ROs 1-3 are considered to be practical (in terms of implementability, enforceability and 
manageability) and monitorable. 

In terms of implementability, there are already other regulations in place controlling the 
placing on the market and use of PFAS-containing firefighting foams. In most of the sectors 
(all others than tank farms), some users have already substituted to PFAS-free foams. 
Sufficient transitional periods are proposed to allow the practical implementation of 
alternatives. 

RO4 is not considered to be practical due to the need to adapt national or sub-national 
legislation to include the derogation system for the continued use of PFAS-containing foams 
on the site operating with permits.  

RO5 is not considered to be practical for industry to implement as full containment of foam 
fire run-off including for large fire accidents is in practice unlikely to be technically and 
economically feasible. 

Enforcement authorities can set up efficient supervision mechanisms to monitor industry 
compliance with the proposed restriction (RO3). Methods can be adapted based on those used 
to analyse PFOA and long-chain PFASs. Several types of analytical methods exist.  

Targeted PFAS analysis is used to quantify individual specific PFAS, for example for the 
comparison with a limit value for a specific PFAS in a product. To quantify a specific PFAS 
reliably (e.g., for enforcement), an analytical reference standard for the particular PFAS must 
be available. Laboratories can currently quantify around 40 different PFAS, but this number 
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is increasing as more reference standards become available. In addition to specific analysis 
methods, the total oxidizable precursor (TOP) assay has been used by several laboratories in 
recent years to analyse PFASs (usually PFCAs) in firefighting foam concentrates and foam 
container rinse water. This method simulates accelerated environmental degradation and 
reveals the presence of arrowhead precursors in a sample e.g., both PFOA and PFOA-related 
substances. These methods are typically able to quantify PFASs at concentrations well below 
the threshold of 1 ppm proposed by the Dossier Submitter.  

Furthermore, ‘total fluorine’ methods measure the overall amount of (organic) fluorine in a 
sample: total fluorine (TF), total extractable organic fluorine (EOF) and total adsorbable 
organic fluorine (AOF). These methods do not identify/differentiate between different kinds 
of fluorine-containing organic substances. Therefore, the total fluorine methods will detect 
and quantify both PFAS and non-PFAS organofluorine substances if they present in the same 
sample. However, the advantage of total fluorine methods, compared to targeted PFAS 
analysis or TOP (see directly above), is that they detect and quantify PFASs for which no 
reference standards exist, including fluoropolymers. In this respect, using total fluorine 
methods to quantify PFASs in firefighting foams (e.g. for compliance and enforcement 
purposes) is more practical than using targeted or precursor analysis as they are more 
compatible with the scope of the restriction proposal (which encompasses all PFAS). However, 
a disadvantage of total fluorine methods is that they would also detect and quantify, where 
they are present, organic fluorine from non-PFAS (i.e. not restricted) organofluorine 
substances in firefighting foams that are outside of the scope of the proposed restriction. 
Therefore, and to facilitate the practicality and enforceability of the proposed restriction using 
total fluorine analytical methods, an additional ancillary requirement71 for labelling the 
presence (and concentration) of non-PFAS organochlorine at concentrations greater than 1 
ppm in firefighting foams is included in the conditions of the restriction (paragraph 7). This 
condition would allow the restriction to be enforced without requiring targeted analysis of all 
PFASs. The utility and appropriateness of this ancillary requirement shall be re-assessed by 
the Dossier Submitter based on comments received in the consultation on the Annex XV 
report. As such, it is presented in the proposed conditions of the restriction in square brackets 
[]. 

Based on the above, the absence of a European (or internationally) standardised analytical 
method for PFASs in firefighting foams is not considered as a hindrance to the enforceability 
of the proposed restriction, even though the importance of developing such a standard 
method at EU level is recognised by the Dossier Submitter. Therefore, considering the 
availability of analytical methods on the market to measure the content of various PFASs in 
firefighting foams, the ROs are concluded to be enforceable as regards analytical methods. 
Besides the availability of analytical methods, a sampling strategy is needed to monitor the 
restriction in the environment and humans. Analytical methods are further described in Annex 
E.7.  

Nevertheless, the enforceability of the additional RMMs required by the proposed restriction 
(RO3) may be challenging for enforcement authorities. This is because the Dossier Submitter 
cannot define them in detail due to sector/use and site-specific differences. This is especially 
relevant for the techniques to collect PFAS emissions. However, best practices exist in some 
sectors and countries and they can be used as a basis for developing additional guidance for 

 

71 A similar ancillary requirement is included in Entry 75 of Annex XVII of REACH (restricted 
substances for tattooing) 
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the industry (see e.g. section 2.2.2.2 for examples). Therefore, enforceability of ROs as 
regards the additional RMMs is considered feasible. In any case, enforcement can be based 
on the presence of the ‘PFAS-containing firefighting foams management plan’ required under 
paragraph 4c of the conditions of the proposed restriction. 

To monitor the effectiveness of the proposed restriction (RO3), time trend monitoring could 
be performed with relevant samples from the environment (i.e., those from around sites using 
firefighting foams) or humans (e.g., firefighters). A deduction of PFAS emissions to the 
environment (and human exposures) resulting from this restriction should result in a 
decreasing PFAS concentration in such a trend monitoring.  

2.8. Proportionality to the risk (including comparison of 
options)  

The starting point for comparing the appropriateness of the five ROs is the balance between 
their potential to reduce PFAS emissions and their socio-economic impacts. As the 
environmental/health benefits of reduced PFAS emissions could not be quantified, it is not 
possible to use cost-benefit analysis to directly assess whether any of the proposed restriction 
options is proportionate. In such cases, ECHA’s approach to the “Evaluation of restriction 
reports and applications for authorisation for PBT and vPvB substances in SEAC” requests 
Dossier Submitters to report the cost per unit (e.g. kilogram) of emissions reduced as the 
starting point for the proportionality assessment.  

Therefore, the approach adopted is to identify the uses/applications and restriction conditions 
(transition periods, concentration thresholds, other risk management measures) that would 
achieve high levels of effectiveness (i.e. large reductions of PFAS emissions) with relatively 
small socio-economic impacts. As discussed above, the proposed transitional periods are 
considered sufficient to develop alternatives and for the users to test alternatives and adapt 
the fire extinguishing systems to allow the same level of fire protection as in the baseline.  

There are potentially significant benefits in terms of the reduced remediation costs 
that will arise by using PFAS-free foams. As a very high-level estimate for illustration, 
the order of magnitude of avoided remediation cost could be hundreds of millions of euros 
(assuming tens of sites across the EU requiring remediation at the cost of tens of millions of 
€ per site) to billions of euros (assuming hundreds of sites across the EU requiring remediation 
at the cost of tens of millions of € per site) (see Annex E.4 for details). Better information, 
e.g. on the total number of sites, on the use of PFAS-containing foams per site or on the 
implementation and effectiveness of best practices in terms of containment and immediate 
clean-up would be required to assess to which extent remediation is likely to be required in 
the future as a result of current uses of PFAS-containing firefighting foams (and could 
therefore be avoided because of the restriction). It is not possible to provide estimates per 
RO, but any such benefits would be higher in RO3 (which results in the highest avoided 
emissions) than in the other ROs, given the quicker abatement of PFAS emissions.  

These remediation costs are not included as savings in the assessment of economic impacts 
as they are considered to be covered by the quantitative estimate for reduced releases which 
is used as proxy of human health and environmental impacts. It could be argued that also 
clean-up savings should be reported as benefits. However, they are considered as economic 
impacts in this report as they are carried out as part of the actual use of the firefighting foams. 
It is not clear to what extent remediation or clean-up eventually removes PFASs from 
circulation, or simply reduces the risk by removing a site-specific concern. The baseline 
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release estimates used in this report assume that all PFASs used will be eventually released 
to the environment and no adaptations have been done due to possible clean-up or 
remediation.    

Same applies at larger scale for savings resulting from avoided drinking water purification 
costs. Use of PFASs in firefighting foams contributes to the general PFAS exposure to relevant 
extent. Due to their properties, most PFASs are difficult to remove from drinking water with 
current techniques in a manner which would be feasible for normal drinking water purification 
facilities. To avoid exposure via drinking water it would be necessary to develop feasible 
purification techniques for use in normal drinking water preparation facilities in case the 
releases would not be minimised. Otherwise new local water resources/aquifers would need 
to be taken into drinking water use. Either of these options can be expected to be costly to 
society. These avoided costs have not been quantified due to lack of data.  

The SEAC PBT/vPvB approach recognises that while weighting on the basis of (expected) 
damage is currently not possible in a systematic way using quantitative approaches, it is often 
feasible to describe factors or situations where the properties of a particular PBT or vPvB 
would be likely to cause damage. The following discusses the factors that are considered 
particularly relevant for this case to support the proportionality assessment. 

 The size and dynamics of the stock of PFASs in the environment is one of the main 
factors. PFASs are very persistent and many of them are expected to stay in the 
environment for decades and even centuries. Exposure to PFASs is hardly reversible 
once effects are encountered (see further discussion on consequences of persistence 
in section 1.1.4 and 1.1.6).  

 The environmental stock of PFASs consists of a highly complex, variable mixture of 
PFASs. This complexity of exposure hampers (in addition to the very persistent 
property) both the exposure assessment and the identification of effects (see section 
1.1.4 for more details). 

 PFASs have a high potential for long-range transport. 

 PFAS exposure via drinking water and food cannot be avoided by any parts of the 
human population if releases are continued (see section 1.1.4 and 1.1.6 for details). 
Effects are highly likely to be triggered over time when the PFAS levels increase.  

 General drinking water purification of PFASs as a consequence of widespread PFAS 
contamination in groundwater and surface water is currently technically and 
economically not feasible and is expected to be challenging also in future due to the 
properties of PFASs (see section 1.1.4 for details and the discussion above on the 
potential costs).  

 Wastewater treatment plants are not effective in removing PFASs (see Annex B.4.2.4. 
and B.4.5). 

 Releases from firefighting uses substantially contribute to the overall environmental 
concentrations of PFASs.  

 Use of PFASs in firefighting foams causes locally contaminated sites. Current 
remediation and clean-up methods are not fully effective to remove PFASs from 
contaminated sites.   

To propose the most appropriate RO, the following aspects are discussed in this section: 
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 Comparison of different users or industrial sectors to describe the possibilities to 
substitute PFAS-containing foams with alternatives 

 Based on this comparison, the sectoral transition periods are derived 
 Derivation of concentration thresholds  
 Cost-effectiveness estimates to discuss proportionality. 

2.8.1. Comparison of different users 

The analysis of alternatives (see Annex E.2) has concluded that alternatives are generally 
considered to be technically feasible in most applications. Further testing is required to 
confirm the technical feasibility of alternatives for some specific applications, particularly large 
atmospheric storage tanks and sites using different types of flammable liquids.  

The various use sectors and applications of firefighting foams vary significantly in terms of 
the potential for a restriction to reduce PFAS emissions to the environment (‘PFAS risk 
reduction potential’), the current feasibility of transitioning to fluorine-free alternatives 
(‘substitution potential’) and the resulting potential socio-economic impacts of that transition. 
Therefore, it is appropriate to set different conditions for the different sectors and applications, 
to balance the effectiveness of the measure with considerations around feasibility of 
alternatives and socio-economic impacts.  

A table summarising and comparing substitution potential, socio-economic impacts and risk 
profile across the main identified user sectors is provided below (Table 8). The comparison in 
the table suggests that training and testing should be the highest priority for a quick transition 
to fluorine-free foams, because the use of alternatives is well established and already 
recommended as industry best practice. According to the stakeholder survey conducted in 
preparation of this Annex XV report, many users have already transitioned to fluorine-free 
alternatives for training and testing and the potential for adverse socio-economic impacts is 
very low for these types of uses. 

The oil/(petro-)chemical industry is by far the largest use sector. The costs of transitioning, 
but also the current emissions of PFASs, are higher than in other sectors. A longer transition 
period for this sector is needed due to the specific applications (notably large tank fires and 
installations using different types of flammable liquids) where further testing is required to 
determine the technical feasibility of alternatives and potential fire-safety risks resulting from 
using alternatives. In order to cover all the sites that are likely to face such particularly 
hazardous fire scenarios, the Dossier Submitter suggests defining them as the establishments 
subject to the Seveso III Directive (upper and lower tier) instead of using a threshold based 
on e.g. tank size or bund area size, which might be too restrictive and could omit several 
relevant industries and sites.  

A rapid transition in marine applications should be a high priority due to the low potential for 
retention of run-off and clean-up after incidents, and established alternatives (e.g. two of the 
alternatives shortlisted in the analysis of alternatives were reported to be used in the marine 
sector) and no particular issues have been raised during the stakeholder surveys. The 
assessment conducted in this report relates to marine ships which are understood to be the 
most relevant types of civilian ships using PFAS-containing foams (no information has been 
received from stakeholders on non-marine ships). However, by extension, the restriction 
entry refers to ships in general (marine and non-marine civilian ships) since the substitution 
considerations are assumed to be similar. 
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Municipal fire services should also be prioritised for a quick transition because alternatives 
are well established and this sector is typically involved in fire incidents outside of specific 
industrial sites where retention of run-off and clean-up after incidents is more difficult.  

Alternatives are less well established in the defence sector. They are considered by some 
stakeholders to be feasible, having been adopted in Europe by the Danish and Norwegian 
armed forces (IPEN, 2018). However, even though some of the applications are similar to 
those of other sectors (e.g. civilian aviation) where substitution has taken place, the defence 
sector entails specificities such as the storage and transportation of explosives and 
ammunition, leading to increased security risks and requiring the highest level of efficiency 
when extinguishing and preventing re-ignition. Transition to an acceptable alternative is likely 
possible in some cases but requires extra care because if the use of alternatives causes any 
fire-safety risks, the potential damages could be significant and could include danger to 
human life. During the stakeholder survey conducted in 2021, several Member State Ministries 
of Defence have called for longer transitional periods – from a minimum of six years up to 
twelve years – to ensure a transition without compromising fire safety, or even requesting an 
exemption. According to REACH Article 2(3), Member States may allow for exemptions from 
the REACH Regulation in the interests of defence. The European Defence Agency has 
published guidelines to follow in case an exemption needs to be applied for. However, 
stakeholders have highlighted potential problems associated with national exemptions in the 
consultations of the PFHxA restriction proposal. According to industry, the national approval 
of an exemption is associated with extensive effort and a legal act of the Union ensures more 
legitimacy and acceptance because of its transparency and legal certainty.  

Likewise, in civilian aviation there is a concern that, if the use of alternatives caused any fire-
safety risks, the potential damages could be significant and would likely include danger to 
human life. However, alternatives are considered feasible and have successfully been 
implemented by many users (e.g. the airports of Dubai, Dortmund, Stuttgart, London 
Heathrow, Manchester, Copenhagen, Schiphol, Australia and Auckland) and a relatively quick 
transition should be sought. The 2021 stakeholder survey – to which several airports 
responded – did not indicate that a transition within five years would not be possible. 

Some alternatives to PFAS-containing portable fire extinguishers for class B fires already exist 
and are in use but suitable alternatives are not available yet for all types of extinguishers. 
Additional time is needed to develop such suitable alternatives and make them available to 
the entire market. 

2.8.2. Transition periods 

The starting assumption adopted for this restriction proposal is to allow sufficient transition 
time to allow for the testing and selection of the most appropriate foam product and the 
adaptation or replacement of the fire extinguishing system to ensure the same level of fire 
protection as that achieved currently with the PFAS-containing foams. Based on this 
assumption, the Dossier Submitter has not quantified or monetised the impacts of any 
reduced fire protection capacity related to the use of alternative foams, as there should be no 
difference in performance.  

Based on the analysis of alternatives (see Annex E.2), their applicability to specific sectors, 
and the input provided by a range of stakeholders on their implementation, different transition 
periods have been considered appropriate for different uses.  
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Successful transition to fluorine-free foams for training and testing has been reported by 
stakeholders across sectors and is already recommended as industry best practice. Therefore, 
a short transition period should be sufficient for training and most testing currently performed 
with PFAS-containing foams. However, there are some specific types of testing that differ in 
terms of their substitution potential. According to (Eurofeu, 2020), the following types of 
testing can be distinguished:  

 testing of foam agents during their development phase,  

 testing of foam agents by users to evaluate product suitability on specific 
combustibles,  

 testing of the correct proportioning of firefighting foam concentrates, and  

 testing of firefighting systems for their function (i.e. testing the fire protection system 
in the same way as it would operate in case of emergency). 

According to Eurofeu, all types of testing can be implemented with PFAS-foam surrogates (i.e. 
alternatives products) except the latter one as also the properties of the foam generated by 
the system are subject to a pass/fail criterion. Therefore, if training and testing activities could 
quickly transition to fluorine-free alternatives, testing of the firefighting systems for their 
function should remain possible with PFAS-containing foams as long as the industry sector 
may use PFAS-containing foams for fire incident management. The Dossier Submitter 
considers that the transition in training and testing applications to fluorine-free foams should 
be feasible in 18 months (with the exception for testing the function of firefighting systems 
mentioned above). 

The Dossier Submitter concludes that technically feasible alternatives to PFAS-containing 
foams are available on the market for municipal fire services and that a quick transition 
should be feasible. An exception to this would be municipal fire services that also have 
responsibility for industrial fires at establishments covered by the Seveso-III Directive. In this 
specific case, the same transitional period as applicable for the Seveso establishments 
themselves would be warranted but limited to the use in these establishments only. The 
Dossier Submitter considers that the transition of municipal fire services to fluorine-free foams 
should be feasible in 18 months (with the exception mentioned above). 

Ready-for-use applications include ready-for-use firefighting agents which are 
predominantly used in handheld portable extinguishers but also as pre-fill of so-called “wet 
systems” (firefighting systems where the pipework from the extinguishing agent feed stock 
to the actual applicator is pre-filled with an extinguishant). Based on the information collected, 
the Dossier Submitter considers that a transition of five years would be necessary for 
developing, certifying and supplying the whole market with suitable alternatives to PFAS-
containing ready-for-use agents. To allow the availability of PFAS-containing portable fire 
extinguishers for five years also for sectors of use with shorter transitional periods (e.g. ships: 
three years), the restriction entry specifies that the transitional period for portable fire 
extinguishers is valid irrespective of the sector of use. 

The oil/(petro-)chemical industry is the sector where users have argued that a longer 
transition period of up to 10 or 12 years is required to ensure that fire safety is not 
compromised. This time would be required to conduct further testing of the feasibility of 
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alternatives for large atmospheric storage tanks72 (LAST) and for other types of challenging 
fire scenarios such as those involving different types of flammable liquids. This is broadly 
consistent with the reported duration of the transition by the Norwegian oil and gas company 
Equinor (see case study in Annex E.2.6), which took about eight years from development and 
testing to full operation of fluorine-free alternatives.  

The collected information indicates that, even though fluorine-free foams seem to perform 
well against different types of fuels overall, different application rates and methods may be 
needed to achieve the desired effect, resulting in the need to implement several technical 
adaptations to the overall fire extinguishing system of a site, including foam storage tanks 
and bunds. Sufficient time would therefore be needed to finalise the testing of different foams, 
application methods and fuels as well as to allow users to implement the necessary technical 
adaptations (mainly to fixed systems) for the transition to PFAS-free alternatives while 
maintaining equivalent fire safety levels. Most stakeholders from the oil/(petro-)chemical 
industry having contributed to the surveys or the consultations related to the PFHxA 
restriction proposal called for transitional periods of 10 to 12 years to allow the development 
and testing of fluorine-free alternatives and to implement the necessary technical changes at 
their sites. To cover all the sites likely to face such hazardous fire scenarios, the Dossier 
Submitter suggest defining them as the establishments subject to the Seveso III Directive 
(tier 1 and tier 2) instead of using a threshold based on e.g. tank size or bund area size, 
which might be too restrictive and could omit several relevant industries and sites. A transition 
period of ten years seems appropriate for the implementation of the transition to fluorine-
free alternatives for this sector of use defined as establishments subject to the Seveso III 
Directive. 

Regarding the defence sector, the Dossier Submitter considers that, based on the 
information received so far, in most cases the transition to fluorine-free alternatives in the 
defence sector should not be significantly different from a technical point of view compared 
to other sectors like the civilian aviation sector where quick extinguishment is also required. 
Contrary to the downstream petrochemical sector, major equipment adaptations are not 
expected. Exceptions might apply for ships already built or ships under construction in 
countries where ship equipment adaptation would not be possible. However, this case has 
only been mentioned by one Ministry of Defence, therefore, a general exemption does not 
seem warranted. If necessary, each Ministry of Defence has the possibility to call for a national 
defence exemption under Article 2(3) of REACH. Therefore, the same transitional period as 
for civilian aviation is proposed for the defence sector (see below). 

The civilian marine sector (and by extension all civilian ships) shows limited capability to 
contain foams during use. In addition, fluorine-fee alternatives are technically feasible and 
available for this sector. On this basis, the Dossier Submitter considers that a short transition 
period should be considered for this use and that three years should be sufficient to implement 
the necessary changes73.  

 

72 These are large-diameter (greater than 40m), open-top floating-roof storage tanks of flammable 
liquids. 

73 It should be noted that certain uses of firefighting foams in the civilian marine sector are regulated by International 
Maritime Organisation rules and fall under Directive 2014/90/EU on marine equipment. This directive itself transposes 
IMO requirements and makes them applicable on vessels flying the flag of an EU Member State. For applying the 
restriction under REACH on firefighting foams to all sea-going ships calling at EU ports, a similar measure at IMO 
level would be needed. 
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For all other sectors (e.g., civilian aviation, offshore oil extraction platforms, etc.), shorter 
transition periods, between three and six years, have been suggested by stakeholders and 
are considered sufficient to allow an orderly substitution towards fluorine-free foams. 
Regarding airports, the stakeholder survey undertaken by the Dossier Submitter in Spring 
2021 – to which several airports responded – did not indicate that a transition within five 
years would not be possible. The Dossier Submitter therefore concludes that technically 
feasible alternatives to PFAS-containing foams are available on the market for the use in 
civilian aviation and that a complete transition within five years should be feasible. In regard 
to offshore oil extraction platforms, the Dossier Submitter concludes that technically feasible 
alternatives to PFAS-containing foams are available on the market. Considering the low 
potential of containment of firefighting foams during their use and the experience likely gained 
on the market since the transition by Equinor, the Dossier Submitter considers that a 
transition within five years should be feasible for offshore platforms. In general, the Dossier 
Submitter considers that a transition within five years should be feasible for these other 
sectors. 

Table 8 below summarises the substitution potential, socio-economic impacts and PFAS-
related risk reduction potential across the identified main user sectors and the transitional 
periods proposed by the Dossier Submitter for this restriction proposal. 

Table 8. Substitution potential, socio-economic impacts and PFAS-replated risk 
reduction potential across the main identified user sector and proposed 
transitional periods 

Use / 
application 

Substitution potential  Potential socio-economic 
impacts 

PFAS-replated risk 
reduction potential 

Transitional periods 
proposed by the 

Dossier Submitter (1) 

Oil/(petro-) 
chemical 
industry 

Low for some 
applications, 

medium/high for 
others: 

Sector includes many 
different and complex 
scenarios. Alternatives 
have successfully been 
implemented for some 

applications but may not 
be readily available for 

others. In particular, 
additional testing 

required to confirm 
feasibility of alternatives 

for large atmospheric 
storage tanks and fires 
with different types of 

flammable liquids.  

High: 
By far the largest user 

(59 % of annual sales), so 
transition is large scale. 
Highest potential fire-
safety risks from using 
alternatives, although 
relatively low risk of 

danger to human life. 

High: 
By far the largest user 
(59 % of annual sales), 
average potential for 

retention of run-off and 
clean-up after incidents. 

 
10 years 

Civilian 
marine 
Applications 
(civilian 
ships) 

High: 
Feasible alternatives 

considered to be 
available and have 
successfully been 

implemented by many 
users. 

Medium: 
Average user (12 % of 
annual sales), average 
potential for fire-safety 

risks from using 
alternatives. 

Very high: 
Average user (12 % of 

annual sales), likely 
lowest potential for 

retention of run-off and 
clean-up after incidents. 

 
3 years 

Defence Low for some specific 
applications/Medium 

for others: 

Medium/High: 
Relatively small user (6 % 

of annual sales), so 
relatively small scale of 

Medium: 
Relatively small user (6 % 
of annual sales), average 
potential for retention of 

 
5 years 
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Use / 
application 

Substitution potential  Potential socio-economic 
impacts 

PFAS-replated risk 
reduction potential 

Transitional periods 
proposed by the 

Dossier Submitter (1) 

Feasible alternatives 
considered to be 

available by some users 
but not by others. Not 
many alternatives have 

been certified or 
implemented by users 

yet.  

transition. Average 
potential of fire-safety risks 

from using alternatives, 
which could result in a 

relatively high potential of 
danger to human life. 

run-off and clean-up 
after incidents. 

Civilian 
Aviation 

High: 
Feasible alternatives 

considered to be 
available and have 
successfully been 

implemented by many 
users. 

Medium/High: 
Relatively small user (9 % 

of annual sales), so 
relatively small scale of 

transition. Average 
potential of fire-safety risks 
from using alternatives, but 
any risks would result in a 
relatively high potential of 

danger to human life. 

Medium: 
Relatively small user (9 % 
of annual sales), average 
potential for retention of 

run-off and clean-up 
after incidents. 

 
5 years 

Municipal 
Fire Services 

High: 
Feasible alternatives 

considered to be 
available and have 
successfully been 

implemented by many 
users. 

Low: 
Average user (12 % of 

annual sales), so average 
scale of transition. Low 

potential of fire-safety risks 
from using alternatives. 

High: 
Average user (12 % of 

annual sales), likely lower 
potential for retention of 

run-off and clean-up 
after incidents because 
not restricted to specific 

industrial sites. 

 
18 months 

Ready to use 
applications 

Medium/High: 
Feasible alternatives 

considered to be 
available for some 

applications but not all 
(R&D, certification 
needed, staggered 

supply of the market to 
cope with manufacturing 

capacity). 

Low/Medium: 
Relatively small user in 

terms of quantities (1 % of 
annual sales according to 
Eurofeu data) but large 

number of devices affected 
(15 million PFAS-

containing fire 
extinguishers estimated). 
Medium potential of fire-

safety risks from using 
alternatives.  

Medium/High: 
Relatively small user, 

likely lower potential for 
retention of run-off and 
clean-up after incidents 

because not restricted to 
specific industrial sites. 

 
5 years 

Testing Very high: 
Feasible alternatives 

considered to be 
available and have 
successfully been 

implemented by many 
users. No need for high 

performance foams. 

Very low: 
Likely very small share of 
use across sectors of use, 
not the most expensive 

high-performance foams 
required. Very low risk of 
damages resulting from 

performance of 
alternatives. 

Low: 
Likely very small share of 
use across sectors of use, 
relatively high potential 

for retention but 
collected waste are not 

necessarily treated 
adequately. 

 
18 months 

Training Very high: 
Feasible alternatives 

considered to be 
available and have 
successfully been 

implemented by many 
users. Little need for high 

performance foams. 

Low: 
Limited share of use. Likely 

not the most expensive 
high-performance foams 

required. Low risk of 
damages resulting from 

performance of 
alternatives. 

Low/Medium: 
Limited share of use, 

relatively high potential 
for retention but 

collected waste are not 
necessarily treated 

adequately. 

 
18 months 
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Use / 
application 

Substitution potential  Potential socio-economic 
impacts 

PFAS-replated risk 
reduction potential 

Transitional periods 
proposed by the 

Dossier Submitter (1) 

Other sectors 
or types of 
uses not 
listed above 

Considered similar as the aviation sector  
5 years 

(1) Alternative transitional periods are proposed for specific cases within some of these 
categories. See the restriction entry and explanatory notes in section 2.2.5 for details. 

 

2.8.3. Concentration thresholds 

There are three main considerations to choose appropriate concentration thresholds for 
remaining PFAS-contamination in firefighting foam systems: residual releases from 
contaminated firefighting foams/systems, the costs of cleaning (or replacement) of 
equipment, and detection limits of testing methods. The first two points are discussed here 
and the last one in section 2.7 (practicality including enforceability). 

Considering these elements, the Dossier Submitter proposes a concentration threshold of 
1 ppm. 

Remaining PFAS-contamination 

It is not clear what impurity levels would be in the contaminated alternative foams without a 
clean-up of the equipment already used for PFAS-containing foams. After transition from C8-
based foam to C6-based foam without a cleaning, ‘high’ concentration (no quantitative 
information) of PFOS has been reported by a stakeholder. Another stakeholder stated that 
after substitution from PFAS-containing to non-fluorine foam, follow-up measurements 
showed that PFASs were still detectable.  

When adopting a certain threshold there is a trade-off between the amount of PFAS emissions 
remaining and the costs of cleaning to achieve that threshold. For example, if the 
concentration of PFASs in the foam concentrate is on average 2.5 %, i.e. 25 000 ppm or 
25 000 000 ppb, a threshold of 1 ppm would lead to a minimum reduction of concentration 
(and hence emissions considering a similar use and RMM pattern) of 99.99 %, whereas a 
threshold of 50 000 ppb would represent a reduction in concentration and emissions of 
99.80 %. A threshold of 1 ppm is 25 000 times lower than the average concentration of PFASs 
in the firefighting foams in use (2.5 %) and 1 000 times below the lowest concentration 
(0.1 %) that can be considered as providing any functionality, therefore the proposed limit 
would impede any intentional use of PFASs in the foam concentrate. 

Cost of cleaning equipment 

According to industry, the cleaning cost heavily depends on the thresholds to achieve. The 
lowest cost reported for cleaning of equipment (foam concentrate tank) is €4 000. For large, 
fixed installations cleaning is more complex and therefore more expensive. The lowest cost 
method is reported to result in low ppb concentrations for each of 13 standard PFASs 
measured in the final rinse water. Other methods are reported to cost between €20 000 and 
€200 000 per equipment. Available information suggests that they could achieve lower 
concentrations (see Annex E.4.3.6 for details).  
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Based on the available information, the Dossier Submitter assumes that the cost of reaching 
the proposed 1 ppm level varies between €20 000 and €200 000 per site depending on the 
sector of use. This estimate accounts for the need to clean-up several equipment/systems 
per site, and also the possibility that higher impurity levels in the foam are reached during 
their storage. This could happen due to remaining PFASs, adhering to the surface of the 
equipment and being released via the foam over time74. 

It is not possible to derive robust cost estimates for different concentration limits. However, 
it can be calculated that reducing the remaining PFAS concentration in possibly contaminated 
fluorine-free foams from 1 ppm to 1 ppb, would reduce the quantity of PFASs released in the 
EU by around 150 kg75 per year (other parameters remaining constant). 

If the cleaning methods needed for reaching the lower thresholds are more expensive (e.g., 
10 times) than those described above, the cost of achieving each additional kg of emission 
reduction would become very high. Even if there is high uncertainty in the data, the Dossier 
Submitter considers it sufficient to conclude that a lower threshold would not be appropriate 
based on its limited risk reduction capacity of less than 150 kg. However, it is recognised that 
some cleaning methods seem to be able to reach lower concentrations than the proposed 
1 ppm. If these are preferred by the users of the substance, the lower concentrations are 
achieved in practice, regardless of the concentration threshold in the restriction proposal. 

More detailed information on the available techniques and associated costs for cleaning 
procedures is available in Annex E.4.3.6 and in Appendix 1. 

2.8.4. Cost-effectiveness estimates 

Table 9 summarises the cost-effectiveness estimates for different ROs and industry sectors 
or types of use.  

Table 9. Estimated C-E ratios for each RO and sector or type of use 
Sector/type of 

use 
RO1 

(€ per kg) 
RO2 

(€ per kg) 
RO3 

(€ per kg) 
RO4 

(€ per kg) 
RO5 

(€ per kg) 

Seveso 
establishments 

700 
(300-3700) 

800 
(300-3900) 

800 
(300-3900) 

560 
(230-2800) 

2300 
(1200-
12000) 

Other 
industries 

160 
(40-680) 

200 
(60-850) 

200 
(60-840) 

200 
(60-850) 

200 
(60-850) 

Civilian 
aviation 

50 
(0-190) 

70 
(5-290) 

70 
(6-290) 

70 
(5-290) 

70 
(5-290) 

Defence 50 
(0-190) 

70 
(4-290) 

70 
(5-280) 

30 
(1-110) 

70 
(4-290) 

Municipal fire 
services 

900 
(310-3600) 

840 
(290-3500) 

830 
(290-3500) 

840 
(290-3500) 

840 
(290-3500) 

 

74 See Annex E.4 on cost of cleaning equipment to comply with the proposed concentration threshold for more 
details. 
75 (Stock of foams x concentrationhigh) - (Stock of foams x concentrationlow) = (150 000 t x 0.0001 %) – (150 000 t 
x 0.0000001 %) < 150 kg.  
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Ready-to-use 
applications 

30 
(0-140) 

60 
(0-210) 

60 
(0-210) 

60 
(0-210) 

60 
(0-210) 

Marine 
applications 

320 
(90-1300) 

310 
(90-1300) 

310 
(90-1300) 

310 
(90-1300) 

310 
(90-1300) 

Training and 
testing 

17 
(0-60) 

60 
(0-140) 

60 
(0-140) 

60 
(0-140) 

60 
(0-140) 

All 
sectors/types 

of use 

500 
(190-
2000) 

520 
(180-
2200) 

515 
(180-
2100) 

415 
(150-
1700) 

1200 
(500-
5500) 

Note: The results for two sectors (municipal fire services and marine applications) suggests 
that RO2 would be less cost-effective measure than RO1. This is because of assumptions 
made to estimate the emission reduction from banning the use (higher reduction in these 
sectors) and should not be interpreted to suggest that banning use of existing foams would 
be cheaper per kg than banning placing on the market of new foams.  

Table 10 reports the incremental cost and incremental reduction in releases for RO2 compared 
to RO1, and RO3 compared to RO2, to allow for a comparison of the restriction options against 
each other (rather than against the baseline). RO4 and RO5 are not covered in this table as 
they are not building on the other options and not considered to be practical by the Dossier 
Submitter.  

Table 10. Incremental cost-effectiveness (C/E) of RO1, RO2 and RO3 

Restriction 
option 

Total 
costs  

(€ over 30 
years) 

Emission 
reduction  

(tonnes over 
30 years) 

C/E-
ratio  
(€ per 

kg) 

Incremental 
cost  

(€ over 30 
years) 

Incremental 
release 

reduction  
(tonnes over 

30 years) 

Incremental 
C/E-ratio  
(€ per kg) 

RO1 5.9 billion 11 800 498 5.9 billion 11 800 498 
RO2 6.8 billion 13 000 520 900 million 1 200 734 
RO3 6.8 billion 13 200 515 8 million 120 67 

Note: These results are based on best estimate scenario  

The results in Table 9 and Table 10 are derived for scenarios with additional RMMs during the 
transitional periods. Results without these additional RMMs are reported in section F.4 of the 
Annex. Recognising that the information on the effectiveness of these RMMs to reduce 
emissions and their costs is uncertain, the results suggest that the C/E ratio of requiring these 
RMMs independently from the ban on placing on the market, use or export would be €15-100 
per kg of release avoided.  

To assess the proportionality of the various restriction options with regard to the risk identified 
in the Annex XV report, the Dossier Submitter compared the cost-effectiveness ratios to those 
of former REACH actions to avoid PBT- or PBT-like substances. As shown in Table 11, the 
cost-effectiveness ratios of around €500/kg for RO1, RO2 and RO3 are similar compared to 
other recent REACH restrictions.  

Table 11. Cost-effectiveness of recent REACH restrictions 
Restriction under REACH €/kg, central value 

Lead in shot in wetlands 9 
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D4, D5 in wash-off cosmetics 415 

DecaBDE 464 

Phenylmercury compounds 649 

PFOA-related substances 734 

PFOA 1 649 

 

(Oosterhuis and Brouwer, 2015) investigated this issue more closely. It was concluded that, 
although cost estimates of previously adopted actions do not allow the derivation of a value 
of society’s willingness-to-pay for reductions in the presence of PBT substance presence, use 
and emissions, the available evidence suggests that measures costing less than €1 000 per 
kg of PBT substance use or emission reduction would usually not be rejected for reasons of 
disproportionate costs, whereas measures with costs above €50 000 per kilogram PBT 
substance are likely to be rejected. While ECHA (2016) did not establish specific benchmarks 
for cost-effectiveness, the Dossier Submitter considers that the proportionality of the 
proposed restriction of PFASs in firefighting foams is supported by the cost-effectiveness 
estimates as they are similar to other recent restrictions adopted by the Commission. 

The Dossier Submitter considers RO3 to be the most appropriate restriction option. Even 
though regulating the use of existing stocks (covered by RO2 and RO3) is more expensive 
per kg of emissions reduced than regulating placing on the market (which is not covered by 
RO1), the estimated cost of €515 per kg of avoided release is still proportionate. RO4 and 
RO5 are not considered most appropriate as they entail lower risk reduction capacity, and 
they are also not considered to be practical. 

2.8.5. Additional risk management measures 

The proposed restriction includes the requirement for the implementation of additional risk 
management measures during the transition periods by means of a mandatory ‘PFAS-
containing firefighting foams management plan’ and the use of best practice risk management 
measures during the whole life cycle of PFAS-containing foams. 

Current practices by foam users vary and are not always appropriate to minimise emissions 
to the environment. Therefore, additional risk management measures are proposed as part 
of the restriction. 

The cost of the requirement to minimise emissions to the environment as well as direct and 
indirect exposure of humans to firefighting foams is monetised in this report by using the 
incineration cost of the foams as a proxy for the cost. Recognising that this does not 
completely cover the requirement, it is considered sufficient by the Dossier Submitter in the 
absence of more accurate cost estimates as the requirement is to minimise the emissions to 
the extent that is technically and economically feasible for the industry. The cost of 
establishing a site-specific ‘PFAS-containing firefighting foams management plan’ is also 
covered by this cost estimate. The total cost of the requirement is estimated to be €60 million 
(NPV) over the 30 years assessment period. 

The emission reduction of the additional RMM requirement is estimated to be around 
1 900 tonnes over the 30-year assessment period for RO3 in the best-case scenario. This is 
relatively high due to the fact that the Dossier Submitter assumes that these measures are 
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currently not implemented, and the effectiveness of these measures is assumed to be 
relatively high76.  

Even though there is high uncertainty related to the cost and release reduction estimates, 
leading to possible overestimation of the cost-effectiveness of the requirement, the Dossier 
Submitter considers the information sufficient to conclude that additional risk management 
measures during the transition periods are justified.  

3. Assumptions, uncertainties and sensitivities 

The following are the main assumptions made in this restriction proposal: 

 There is no trend in the amounts of PFAS-containing foams used, i.e. same amounts 
would be used each and every year during the 30 years assessment period without 
regulation. An increase could be justified due to an increase in GDP, and on the other 
hand, a decrease could be justified because alternative foams are under development. 
The latter seems more plausible and thus, we may overestimate the emissions and 
thus the costs of the restriction. Even though a trend is not accounted for in the 
quantitative calculations, the assumptions about foam stocks and annual sales are 
varied in the sensitivity analysis.  
 

 Environmental/health benefits of the reduction of PFAS emissions cannot be quantified, 
primarily due to a lack of knowledge about the effects of PFASs to human health and 
the environment. The avoided releases are used as a proxy of the environmental and 
human health impacts. Possible avoided remediation costs and avoided drinking water 
purification costs are not counted as savings but described qualitatively as a benefit of 
the avoided releases. 

 In the baseline, all the PFASs in firefighting foams will be released during the service 
life of the foam. No effective collection and safe disposal are assumed. Only if foams 
expire before their use (which takes place only in some sensitivity scenarios), safe 
disposal is assumed. 

 The proposed sectoral transition periods allow the transition to fluorine-free 
alternatives without compromising fire safety. 

The input parameters taken for the quantitative emissions and cost calculations are 
summarised in Table 12 and Table 13. These also report the sources of the data, level of 
uncertainty and the values used for the calculations in the so-called low, best and high 
scenarios. For the emissions estimates in the baseline, the same input parameters as in Table 
12 for the best scenario have been applied, with the exception of the parameter for 
“Effectiveness of additional RMMs imposed by the ROs” which is not relevant in the baseline 
scenario. 

For each RO, sensitivity analyses were carried out to describe the magnitude of uncertainty 
in the results and to understand the contribution of each input parameter to the overall 
uncertainty. The level of uncertainty for each parameter was labelled low, medium or high 
based on the Dossier Submitter’s judgement. Based on this, reasonable assumptions for low 

 

76 See section 3. “Assumptions, uncertainties and sensitivities” for input parameters. 
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and high scenarios were made. However, the intention was not to determine the lowest and 
highest possible values for each parameter.  
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Table 12. Input parameters for the calculation of the emissions in the five scenarios RO1 – RO5 (“Low”, “Best” and “High” estimates). 

Parameter Source of best 
estimate  

How parameters have 
been derived 

 
Values used 

Level of uncertainty 
(low, medium, high) 

Low estimate 
“Low scenario” 

Best estimate 
“Best scenario” 

High estimate 
“High scenario” 

Foam stock and annual 
sales 

The foam stock in 
year 0 should be 
derived from the 
Excel sheet so that 
the annual use, 
based on (Wood et 
al., 2020) is 
obtained. 

See description of mass 
balance calculation in 
Appendix 8. 

Medium Mass balance to obtain 
14 000 t/y of annual 
sales  

Mass balance to obtain 
18 000 t/y of annual 
sales 

Mass balance to obtain 
20 000 t/y of annual 
sales 

Concentration of PFAS-
containing surfactants in 
foam 

(Wood et al., 2020) Wood’s stakeholders’ 
consultation 

Low 2 % 2.5 % 3 % 

Average foam life span  (Wood et al., 2020) Literature and confirmed 
by stakeholders (note: 
the  PFAS-containing  
foams normally do not 
have an indicated expiry 
date and in practice 
samples are taken from 
time to time and validity 
confirmed by lab. Can 
actually be used beyond 
20 y) 

Low 15 y 15 y 15 y 

Sectoral breakdown 
(shares of industry 
sectors) 

(Wood et al., 2020) Based on Eurofeu’s data Low (only the share of 
Seveso vs non-Seveso 
(“other industries”) of 
the oil/petrochemicals 
category is more 
uncertain, based on 
expert’s assumption) 

Defence: 6 % 
 
Civilian Aviation: 9 % 
 
Municipal Fire 
Services: 13 % 
 
Chemical / 
Petrochemical: 59 % 
 
Marine Applications: 
12 % 
 
Ready to use 
applications: 1 % 

Defence: 6 % 
 
Civilian Aviation: 9 % 
 
Municipal Fire 
Services: 13 % 
 
Chemical / 
Petrochemical: 59 % 
 
Marine Applications: 
12 % 
 
Ready to use 
applications: 1 % 

Defence: 6 % 
 
Civilian Aviation: 9 % 
 
Municipal Fire 
Services: 13 % 
 
Chemical / 
Petrochemical: 59 % 
 
Marine Applications: 
12 % 
 
Ready to use 
applications: 1 % 
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Share of Seveso versus 
non-Seveso (“other 
industries”) of the 
oil/petrochemicals 
category: 98 % versus 
2 % 

 
Share of Seveso versus 
non-Seveso (“other 
industries”) of the 
oil/petrochemicals 
category: 98 % versus 
2 % 

 
Share of Seveso versus 
non-Seveso (“other 
industries”) of the 
oil/petrochemicals 
category: 98 % versus 
2 % 

Sectoral transition period Expert judgement  Not applicable Defence:5 y 
 
Civilian Aviation: 5 y 
 
Municipal Fire 
Services: 1.5 y 
 
Chemical / 
Petrochemical Seveso: 
10 y 
 
Other industries: 5 y 
 
 
Marine Applications: 3 
y 
 
Ready to use 
applications: 5 y 
 
Training and testing: 
1.5 y 
 

Defence:5 y 
 
Civilian Aviation: 5 y 
 
Municipal Fire 
Services: 1.5 y 
 
Chemical / 
Petrochemical Seveso: 
10 y 
 
Other industries: 5 y 
 
 
Marine Applications: 3 
y 
 
Ready to use 
applications: 5 y 
 
Training and testing: 
1.5 y 

Defence:5 y 
 
Civilian Aviation: 5 y 
 
Municipal Fire 
Services: 1.5 y 
 
Chemical / 
Petrochemical Seveso: 
10 y 
 
Other industries: 5 y 
 
 
Marine Applications: 3 
y 
 
Ready to use 
applications: 5 y 
 
Training and testing: 
1.5 y 

Use type breakdown 
(training/testing and fire 
incidents management): 
annual use (compared to 
stock) 

Eurofeu and other 
stakeholders’ 
consultation 

Eurofeu’s data and other 
stakeholders’ consultation 

Medium  13 % for fire incidents 
management 
5 % for training and 
testing 
Except ready to use 
applications: only live 
incidents 

10 % for fire incidents 
management 
 
2 % for training and 
testing 
 
Except ready to use 
applications: only live 
incidents 

5 % for fire incidents 
management 
1 % for training and 
testing 
Except ready to use 
applications: only live 
incidents 

Emissions parameters: 

 leakage during storage 

 emission formulation 
to WWT 

 emission formulation 
to air 

Best scenario: Wood 
emission scenario 
spreadsheet  
High and low 
scenarios: leakage: 
OECD emission 
scenario document 
10 for lubricants and 

Best: Wood emission 
scenario spreadsheet (for 
formulation, equal to 
REACH default values for 
formulation) 
Low= best/2 in 
accordance with low and 
best for leakage 

Medium leakage during 
storage: 0.5 % 

emission formulation to 
WWT: 1 % 

emission formulation to 
air: 1.25 % 

leakage during 
storage: 1 % 

emission formulation to 
WWT: 2 % 

emission formulation to 
air: 2.5 % 

leakage during 
storage: 2 % 

emission formulation to 
WWT: 2 % 

emission formulation to 
air: 2.5 % 
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 emission formulation 
to soil 

 emission during 
incineration 

 share WWT to effluent 

 share WWT to 
soil/sludge 

 partitioning coefficient 

additives: range, 
referenced in REACH 
guidance R16 page 
78 
Low= expert 
judgement 

High = best *2 (leakage 
during storage) 

emission formulation to 
soil: 0.005 % 

emission during 
incineration: 1 % 

share WWT to effluent: 
0.375 

share WWT to 
soil/sludge: 0.625 

partitioning coefficient: 
2.67 

emission formulation to 
soil: 0.01 % 

emission during 
incineration: 1 % 

share WWT to effluent: 
0.375 

share WWT to 
soil/sludge: 0.625 

partitioning coefficient: 
2.67 

emission formulation to 
soil: 0.01 % 

emission during 
incineration: 1 % 

share WWT to effluent: 
0.375 

share WWT to 
soil/sludge: 0.625 

partitioning coefficient: 
2.67 

Releases to surface 
water, soil and sea 
during incidents (in 
absence of RMMs) 

(Wood et al., 2020), 
based on PFOA 
Annex XV dossier 

 Medium 100 % releases: 

50 %/50 %/0 % for all 
sectors of use except 
marine 
(0 %/0 %/100 %) 

100 % releases: 

50 %/50 %/0 % for all 
sectors of use except 
marine 
(0 %/0 %/100 %) 

100 % releases: 

50 %/50 %/0 % for all 
sectors of use except 
marine 
(0 %/0 %/100 %) 

Effectiveness of bunding 
measures for training 

(Wood et al., 2020) Based on expert’s 
judgment 

Medium 97 % for all sectors 
except marine (0 %) 

97 % for all sectors 
except marine (0 %) 

97 % for all sectors 
except marine (0 %) 

Effectiveness of WWTP 
for PFASs 

(Wood et al., 2020) 
Low estimate: 
expert judgment 

Based on expert’s 
judgment 

Medium 5 % 0 % 0 % 

Effectiveness of 
additional RMMs imposed 
by the ROs:  

 collection to the extent 
feasible of the 
firewater from fire 
incidents and their 
incineration 

 incineration of all 
collected firewater 
from training/testing 
(collection already 
considered in place 
under the baseline 
scenario) 

 Only RO5: after 10 
years for Seveso sites 
“full” collection and 
incineration of 
firewater from fire 
incidents (before that: 
collection to the extent 
feasible) 

Ramboll’s expert 
judgement 

 Medium collection of firewater 
during incidents 

97 % for all sectors 
except marine, ready to 
use and municipal fire 
services (0 %) 
100 % incineration of 
all collected firewater 
from training   

collection of firewater 
during incidents 
50 % for all sectors 
except marine, ready 
to use and municipal 
fire services (0 %) 
Chemical / 
Petrochemical Seveso: 
97 % 
100 % incineration of 
all collected firewater 
from training 

collection of firewater 
during incidents 

0 % for all sectors  

Chemical / 
Petrochemical Seveso: 
97 % 

100 % incineration of 
all collected firewater 
from training 
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Table 13. Input parameters for the calculation of the transition costs, sources and use (low, best and high scenarios) 

Parameter 
Source of best 
estimate  

How parameters 
have been derived 

Level of 
uncertainty 
(low, 
medium, 
high) 

Values used in different cost scenarios 

Calculations for which 
parameters have been 
used Low Best High 

Incineration/disposal costs 
€/tonne 

(Wood et al., 2020) 
Table 8.14 p. 163 

Range confirmed by 
stakeholders 

Low -10 %  €1 000/tonne +25 % 
Early disposal of legacy foams 
when replaced 

Cost of 
using 
alternative 
foams 

Average price 
€/tonne of PFAS-
containing foam 

(Wood et al., 2020) 

Table 8.4 p. 148 

Range confirmed by 
stakeholders 

Low  +25 % €3 000/tonne -10 % 

Depreciation of stocks to be 
disposed of 
Additional costs of alternative 
foams due to price and/or 
volume differences 

Average price 
€/tonne of 
fluorine-free 
foam 

(Wood et al., 2020) 

Table 8.4 p. 148 

Range confirmed by 
stakeholders 

Low -10 % €3 000/tonne +25 % 
Additional costs of alternative 
foams due to price and/or 
volume differences 

Additional 
volumes 
required % 
increase over 
PFAS-containing 
foams 

(Wood et al., 2020) 

Table 8.4 p. 148 

Range confirmed by 
stakeholders Low 

+25 % 
required +50% required +75 % required 

Additional costs of alternative 
foams due to price and/or 
volume differences 

Savings from avoided clean-up 

(Wood et al., 2020) 

Section “Clean-up” 
pp. 155-156 

Wood et al. (2020) 
estimate cost of 
€100 000 to a few 
million € per incident 
requiring clean-up. 
Assuming several 
tens of incidents per 
year requiring clean-
up due to PFAS 
content of foam 
gives around €10 
million per year. 
Average clean-up 
costs per PFAS-
containing foams in 
use (€ per tonne) 

Medium +100 % 

Gradually increasing 
to €10 million per 
year for the sum of 
all sectors 

-50 % 
Clean-up (after use, training, 
leakage, spill) savings 
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derived to come to 
the results of the 
Wood study. 

Additional 
producer 
surplus due 
to exports 
excepted 
from the 
ban (only 
for RM3) 

Tonnage of 
exports 

FFFC (FFFC-
Interview, 2021) and 
Eurofeu (Eurofeu, 
2021) 

25% of annual sales, 
i.e. 25% of 18 000 
t/y = 4 500 t/y 

Medium 
10 % of 
revenues for 
five years 

10% of revenues for 
two years 

10 % of revenues 
for one year 

Producer surplus due to 
exports excepted from the ban 
(RO3) 

Years with profit 
losses due to 
export ban (or 
additional profits 
due to exports 
exempted from 
the ban) 

(Ramboll, 2021) 

Profits assumed as 
10% of the value of 
sales revenue 
Two years profit loss 
(best cost scenario) 
as a proxy of the 
changes in producer 
surplus 

Costs per site for implementation 
of RMMs to meet full containment 
(only for RO5 and Seveso sector) 
 

ECHA survey 2021 
Information from 
industry 

Medium -50 % €2 000 000 per site +200 % 

Costs for the implementation 
of RMMs to meet full 
containment within the total 
site (RO5, Seveso sector) 
 

Costs of technical means to 
contain releases and disposal of 
PFAS-contaminated water from 
the fire-water run-off from 
testing/training 
 

(Wood et al., 2020) 
Table 8.14 p. 163 

Incineration/ disposal 
costs used as a 
proxy to cover the 
whole requirement 

Medium -50 % €1 000/tonne +100 % 
Cost of additional RMMs for 
training/testing 

Costs of technical means to 
contain releases and disposal of 
PFAS-contaminated water from 
the fire-water run-off from 
incidents 
 

(Wood et al., 2020) 
Table 8.14 p. 163 

Incineration/ disposal 
costs used as a 
proxy to cover the 
whole requirement* 

Medium -50 % €1 000/tonne +100 % 
Cost of additional RMMs for 
incidents 

Sector-specific parameters  

Cleaning cost 
to comply with 
the proposed 
concentration 
threshold 

Cleaning costs 
per site 

(Ramboll, 2021), 
derived from 
estimations from 
stakeholders: 

Vehicles: WFVD 
(WFVD and Peltzer, 
2021) (Plant Fire 
Brigade Association 
Germany), LfU (LfU-
Gierig-Interview, 
2021) (Bavarian 

Dependent on 
vehicles versus 
installed systems and 
remaining PFAS 
levels  
 

Medium 
-50 % in total 
cleaning costs 

SEVESO: €200 000 
per site.  

Civilian aviation and 
military: €50 000 per 
site 

Other sectors: 
€20 000 per site.  

Training and testing 
and ready to use 
applications: not 

+100 % in total 
cleaning costs 

Costs for cleaning of 
equipment 
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* In the absence of better information, the incineration cost of the PFAS-containing foams is used to approximate the cost of the requirement. This may 
significantly underestimate the cost of the requirement considering that there are currently tens of thousands of users of PFAS-containing firefighting 
foams.   

State Ministry for the 
Environment and 
Consumer 
Protection); 
Cornelsen 
(Cornelsen-
Interview, 2021) 
(supplier of 
PerfluorAd process) 

Installed systems: 
one large German 
chemical/Seveso 
company) 

relevant 
(see footnote*) 

Number of 
sites per 
sector(s) 

(Wood et al., 2020) 
(A.2.3.4, p. 389). 

One unit per site as 
an average that has 
to be cleaned 

Medium 

Same as for 
the best 
scenario (the 
total costs of 
cleaning are 
considered in 
the sensitivity 
analysis by 
varying the 
unit cost. 

Seveso: 10 000 

Other industries: 
1 000 (not reported 
by Wood) 

Civilian aviation: 401 

Military: 239  

Municipal fire 
services: 50 000 
marine applications: 
15 000 (sea-going 
ships) 

Training and testing 
and ready to use 
applications: not 
relevant 

Same as for the 
best scenario 
(the total costs 
of cleaning are 
considered in 
the sensitivity 
analysis by 
varying the unit 
cost. 

Costs for cleaning of 
equipment 
Cost of technical changes 
needed to use alternative 
foams 
Costs for the implementation 
of RMMs to meet full 
containment within the total 
site (RO5, Seveso sector) 

Cost of 
technical 
changes 
needed to use 
alternative 
foams 

Cost of 
technical 
change per 
site  

See Section F.4.3. 
(Cost of technical 
changes needed) in 
the Annex. 

€500 000 assumed 
for Seveso sites who 
provided information 
on significant costs. 
For other sectors no 
information 
suggesting 
significant costs is 
available. 
 

High -50 % 

Seveso: €500 000 

Training and testing: 
€0 

Ready-to-use 
applications: not 
relevant** 

Other sectors:  
€5 000 

+200 % 
Cost of technical changes 
needed to use alternative 
foams 
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** The estimated total cost of €7 million over 30 years for ready-to-use applications does not consider the possible need for early replacement of the 
exiting fire extinguishers. According to industry, replacement of the device may be needed. In this case, the cost for this sector could be significantly 
higher as there are around 15 million PFAS-containing extinguishers in use in the EU. However, the five-year transition period proposed for this sector is 
indicated to be sufficient by the industry to replace also the devices when necessary (see Annex E.4.3 for further details).
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The emission calculations are subject to a range of uncertain assumptions. Among them, the 
annual use rates, the nature and efficiency of the risk management measures already in place, 
and the efficiency of the RMMs proposed in the restriction have been identified as entailing 
the highest uncertainties which can potentially significantly affect the results. The most 
uncertain parameters used in the cost assessment are related to the cost of technical changes 
needed to use alternative foams. In addition, there is in-build uncertainty in using the reduced 
emissions as a proxy of the risk reduction and reduced negative human health and 
environmental impacts. As mentioned in section 2.8, potential savings from avoided clean-up 
could further be described as benefits of restriction (instead of savings as done in this report). 
Even if this assumption would be changed, the overall results would not change significantly 
as this cost element represents only less than 2% of the total cost of the proposed restriction. 
Only for some cost categories a sector/use-specific assessment was considered necessary 
based on available data. This simplifies the assessment but does not mean that other sector-
specific issues could not exist.  

The full results of the sensitivity analysis are reported in Appendix 8 and 9.  

4. Conclusion  

All PFASs are very persistent in the environment. Many PFASs are likely to persist in the 
environment longer than any other man-made organic substance. As a consequence, if 
releases are not minimised, humans and other organisms will be exposed to progressively 
increasing amounts of PFASs until such levels are reached where effects are likely. In such 
an event the exposures are practically irreversible. Even if further releases of PFASs were 
immediately prevented, existing environmental stocks would continue to be a source of 
exposure for generations. There are several additional concerns arising from the use of PFASs, 
e.g., that a ubiquitous contamination of drinking water resources is unavoidable unless 
releases are minimised. Human exposures occur efficiently via all exposure routes via 
environment and cannot be avoided or mitigated. Some PFASs can accumulate in plants, 
others have bioaccumulation potential in biota and humans. Exposures are also transmitted 
effectively to unborn and breastfeeding children.  

Use of PFASs in firefighting foams is substantially contributing to long-term general human 
and environmental exposures of PFASs aside other uses. The proposed restriction is providing 
a partial solution to the need to prevent the increase of general PFAS exposures. However, 
specific to the use of PFASs in firefighting foams, the potential to contaminate local 
environments, where firefighting, equipment maintenance and training take place, is high. 
The proposed restriction directly prevents such contaminated sites to be formed in future.  

Five Member States are in the process of preparing a restriction that would cover all uses of 
PFASs. Concurrently, the Commission requested ECHA on 20 July 2020 to prepare a restriction 
proposal on the use PFASs in firefighting foams, as there are many technically and 
economically feasible alternatives available with the same function. Furthermore, initiatives 
have been taken in non-EU countries such as in Australia and restrictions on use in several 
US states and Australia. This global trend of moving away from PFASs in firefighting foams 
also helps the implementation of the proposed EU-wide restriction. 

Based on five main options considered, a restriction covering placing on the market, use and 
export is proposed in the EU with specific transitional periods. The assessment of risk 
reduction capacity, costs and cost-effectiveness ratios supports this conclusion. The results 
are associated with significant uncertainties and ranges have been estimated. 
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The need for the restriction of PFASs in firefighting foams is based on the following 
considerations: 

 Risks of PFASs are of the non-threshold nature.  

 PFASs are very persistent. PFAS exposures are therefore likely to increase to such 
levels that effects are triggered. At that point of time, the exposures are hardly 
reversible. 

 Many PFASs are mobile in water, and their potential for long-range transport is high. 
This in combination with high persistence mean that PFAS exposures cannot be 
avoided by humans.  

 Humans and environmental organisms are exposed to a complex mixture of PFASs, 
many of which have so far not been subject of regular targeted monitoring. Combined 
effects are likely within the group.   

 The continued use of PFAS-containing firefighting foams is estimated to result in about 
14 000 tonnes of emissions to the environment in the EU in the next 30 years unless 
action is taken. The proposed restriction option would lead to an estimated reduction 
of emissions of 13 200 tonnes over 30 years, which corresponds to an emission 
reduction of PFAS of 440 tonnes per year. 

A restriction under REACH on the placing on the market, use and export of PFAS-containing 
firefighting foams is justified because: 

 Suitable alternatives are available for most applications (all except sites or sectors 
which could face with particularly challenging fire scenarios such as establishments 
subject to the Seveso Directive). 

 Transition periods are proposed for each type of use or industrial sector. In this manner 
it will be possible to select and test the most appropriate alternative firefighting 
product and to adapt the fire extinguishing system if necessary, without jeopardising 
the fire safety. 

 Risk management measures that could reduce the emissions of PFASs in the 
environment are available and may to unknown extent be applied, however, in 
absence of additional regulatory measures these appear unlikely to significantly reduce 
the emissions of PFASs from the use of firefighting foams. To minimise the emissions 
of PFASs in the environment and the exposure of humans during the transition periods, 
the restriction needs to include additional mandatory risk management measures.  

 The net-present value of the cost related to the restriction was estimated at €6.8 billion 
for the assessment period of 30 years. The cost-effectiveness of emission reduction 
was estimated at €515 per kg. This is comparable to other restriction proposals 
adopted by the Commission on PBT and PBT-like substances. 

 The concern should be addressed at EU-level due to the functioning of the internal 
market for firefighting foam products. Firefighting foams are traded over the borders 
and it would not be meaningful or possible to restrict them nationally due to internal 
market considerations. Furthermore, due to their high mobility and persistence (at 
least of some PFASs), PFAS emissions could lead to cross-border pollution.  

 
Fluorine-free foams have characteristics which differ from PFAS-containing foams. Therefore, 
for each user, testing of the alternative foam product in conjunction with the foam application 
method and adaptation of the fire extinguishing installation and equipment will be required. 
For certain types of uses this transition is expected to be implementable in a relatively short 
term. For other uses, a longer time is likely to be needed. In addition, the potential for 
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emission reduction depends on the type of use. For these reasons, different transitional 
periods are considered per type of use and described below.  

The proposed transitional periods are based the information collected during the preparation 
of this restriction proposal, including several stakeholder consultations. They are based on 
the assumption that suitable alternatives are implementable for each type of use by the end 
of the corresponding transitional period, i.e. that the transition to alternative would not 
compromise the fire safety. 

Sector/type of use or 
placing on the market 

Transitional period from the entry into 
force 

Seveso establishments 10 years 

Other industries 5 years 

Civilian aviation 5 years 

Defence 5 years 

Municipal fire services 18 months 

Ready-to-use applications 5 years 

Marine applications 3 years 

Training and testing 18 months 
Export 10 years 

 

Regarding concentration thresholds, a balance would need to be struck between the 
amount of PFAS emissions remaining if a given threshold is adopted, versus the costs of 
cleaning imposed to achieve that threshold. Stakeholder input suggests that 1 ppm can be 
achieved with a relatively simple cleaning. Lower thresholds are achievable with more 
complex and costly processes. However, setting a lower concentration threshold would only 
lead to a small additional reduction in PFAS emissions, compared to the overall reduction 
achieved by the restriction.  

Finally, the proposed restriction would oblige the users to prepare and implement a PFAS-
containing firefighting foams management plan and best practice risk management 
measures during and after the use of PFAS- containing firefighting foam. This covers among 
others foam purchase, containment, treatment, proper disposal of PFAS-containing foams and 
fire water run-off, use of personal protective equipment. These measures provide relatively 
effective reduction of PFAS emissions and exposure of workers and professionals at relatively 
low cost during the transition periods when PFAS-containing foams continue to be used. 

In conclusion, in response to the request made by the Commission on 20 July 2020, the 
restriction on the placing on the market, use and export of PFASs in firefighting foams is 
proposed. The proposed entry for the restriction is presented in section 2.2.5. 
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