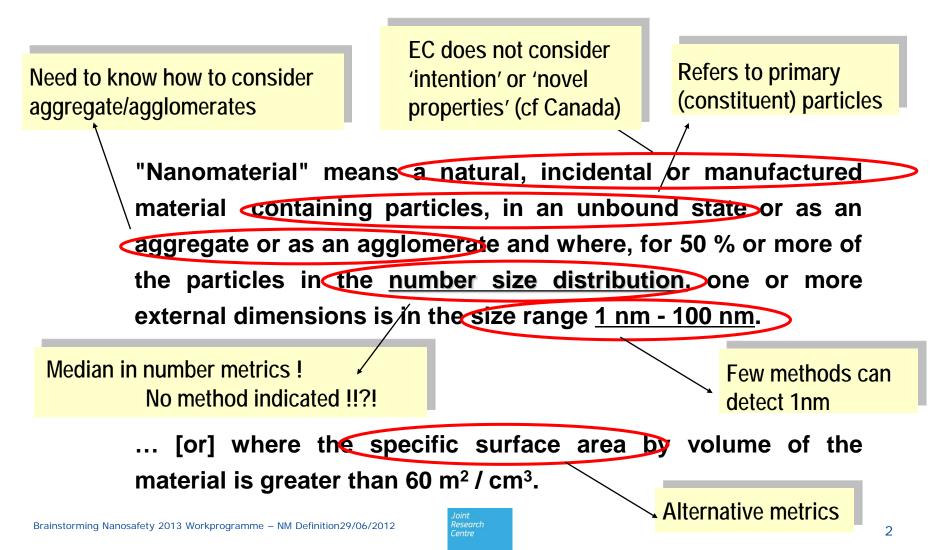
Implementation of the risk-neutral, wide scope EC nanodefinition: Practical concepts and test cases

Dr. Wendel Wohlleben

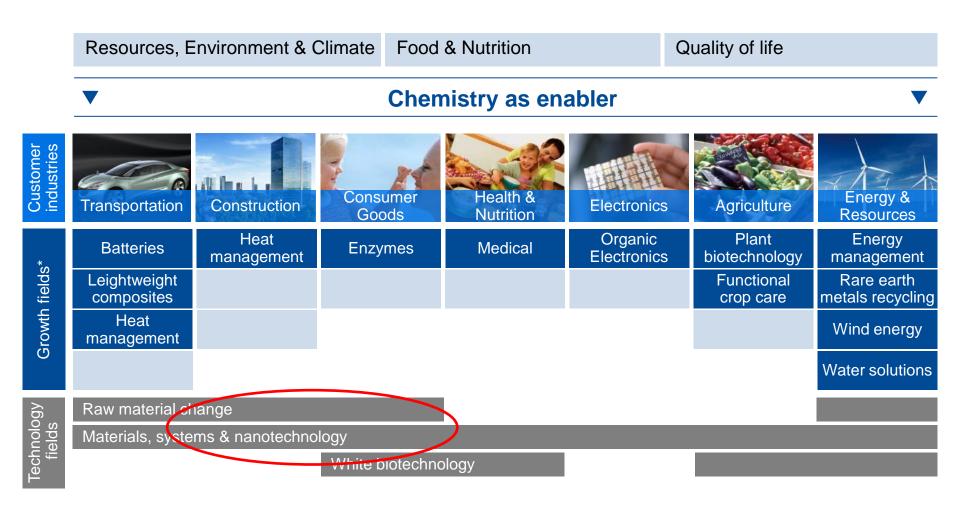

Senior Scientist: Characterization of Nanomaterials

Advanced Materials & Systems Research, Dept. of Material Physics

COMMISSION RECOMMENDATION on the definition of nanomaterial

Impact vs. scope

BiPRO study expects alone in Belgium


- about 2,000 5,000 substances
- 80,000 160,000 preparations
- 800,000 1,300,000 articles.*
- The actual numbers that industry faces are much higher, since BiPRO focused on engineered nanomaterials and excluded non-engineered particulates (often referred to as incidental)

*A unique article is here a product anywhere along the supply chain, placed on the Belgian market, and that has its own product identifier (e.g. different coloured paints are unique products)

Nanotechnology is a cross-sectional enabler for BASF and its customers

The Chemical Company

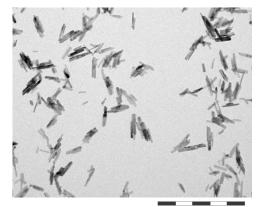
*including growth fields still under evaluation

Need to screen all "particulate" materials in the absence of guidance or validated methods.

- → Indicative ranking of conceptual & metrological challenge
- 1. <u>Pigments, fillers, anticaking agents</u> are clearly particulate, and product performance is linked to their relatively well-defined morphology
 - Datasheets often specify size in volume metrics or specific surface area
 - No technical relevance of size in number metrics
- 2. <u>Solidified waxes, dried salts, mortars, polymer granulates</u> are particulate, but product performance is after melting or dissolution
 - Size and shape are not engineered, not specified (µm // mm // cm)
 - Can be indispersible (soluble, reactive), polydisperse, complex shaped
- 3. Formulations, liquids with particulate traces, porous materials
 - Conceptually very vague in the present EC definition

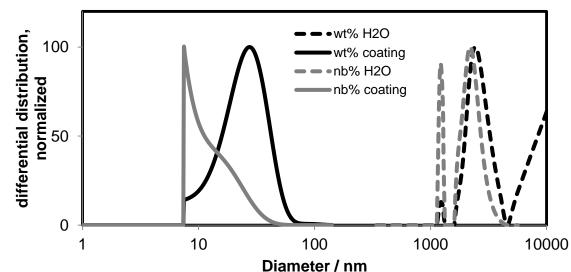
The Chemical Compan

Conclusions from round robin on 8 pigments with LD, CLS, DLS, VSSA, TEM and standardized sonication protocols


- From results of this project it has not been possible to recommend any single, simple and commonly available method which can reliably identify, according to the EU definition, a nanomaterial after re-dispersion in liquid.
- Interim proposal of a pragmatic approach, which uses accessible and cost-effective methods, requires tiered approach
- Sample state (especially dispersions) is critical to achieve a valid and representative determination of a particle size distribution: wetting – disintegration – stabilisation
- Expertise and knowledge of the substances in question is needed to obtain meaningful results.

A route to solution? Compare classifications by measurement of "smallest dispersible unit"

Sonication in water often assumed as «smallest dispersable». Even better dispersion is known from performance testing:


- DIN 53238-13 Dispersion in low-vicosity media by a shaker
- ISO 8781-1:1990 Pigments and extenders -- Methods of assessm. of dispersion characteristics

500 nm

Pigment Yellow 42

- Much enhanced dispersion in organic coating than in water
- ✓ Dispersed D50 by CLS matches TEM (15nm) and BET (80m²/g) expectations
- Size distribution screwed by detection limit, not credible.
- Number metrics conversion amplifies errors

A route to solution? Compare classifications by measurement of "smallest dispersible unit"

The "smallest dispersible unit" classifies 60% of those pigments as non-nano that are nano by EM and BET/VSSA.

However, it achieves the same ranking of materials.

Color index	Baseline EM: Shape	Smallest external dimension (EM, BET): D50 / nm	Smallest dispersable unit (CLS): D50 / nm
Pigment Yellow 42	Rod, agglom.	10	14
Pigment Red 101	Rod, agglom.	9	20
Pigment Yellow 139	Irregular particle	150	448
Pigment Red 254 opaq	Irregular particle	233	976
Pigment Red 254 trans	Irregular particle	36	250
Pigment Blue 15:4	Irregular rod	30	162
Pigment Blue 15	Irregular rod	75	114
Pigment Yellow 184	Irregular particle	107	240

If number metrics is a key paradigm, classify by "smallest dispersible unit"

- Measurement of "smallest dispersible units" is technically feasable
 - sonication in water, then classifying & counting methods (CLS, spICPMS, NTA, SMPS, ...)
 - delivers a size distribution in number metrics
- Integrates an element of risk assessment (dispersability)
- In general no agreement with "smallest external dimension" (EM, BET)
 - BASF pigments, many more test cases in Non- project
 - even some materials with product performance directly linked to structures (pigments, fillers) would be non-nano
- JRC report #2 advises against universal dispersion protocol, making the concept irreproducible between manufacturers.

PRO

CONTRA

The Chemical Company

Expected improvements with view to the implementation of the definition

- some reference materials available
- agglomerates can be measured (aggregates?)
- validity of conversion algorithms rated
- more methods available for range < 30 nm and complex materials
- largely increased cost-efficiency
- standardised methods available
- guidance on use of methods

			Costs per sample	Widely used/ Availability	Potential for im- provement in NanoDefine with- in 2014-2017?	of the mate-
		SEM	-	++	+	
	EM	TSEM	-	+	+	
		ТЕМ		0	0	
Counting	SFM		-	+	0	-
	РТА		+	0	+	-
	TRPS sp ICP-MS		+	-	-	_
			+	-	+	_
	FFF		o	-	+	-
Fractio-	AC		+	+	+	-
nating DMAS		+	0	0	-	
	SEC		o	0	-	-
	DLS		++	++	о	-
	SAXS		+	0	0	+
	USSp		+	-	-	-
Ensemble	XRD		+	++	-	+
	ALS		+	0	0	-
	os		+	+	-	-
	FCS		N/A			
Integral	BET		+	++	-	o

Costs per sample very different between methods.

Expect techniques to improve only incrementally.

Very few methods measure "as is"

NanoDefine Deliverable 3.1 preview

Resulted from subjective opinions of NanoDefine experts. The table will be revised at a later stage and is not final.

			Size range					Access to primary	Access to the small-	
			nm		μm				mension	
			1-10	10-30	30-100	0.1–1	1–10	>10	particles?	of each particle
		SEM	-	(+)	++	++	++	++	+	+
	EM	TSEM	(+)	+	++	++	++	++	+	+
		ТЕМ	++	++	++	++	++	+	++	+
Counting	SFM	•	+	++	++	+	o	-	o	++
	РТА			o	+	++	-			
	TRPS	;			o	+	+			
	sp IC	P-MS	-	0	+	++	-	1	-	
	FFF		+	++	++	++	o		-	-
Fractio-	AC		0	+	++	++	+	-		
nating	DMA	s	+	++	++	++	_		-	-
	SEC		o	+	+	+	o			
	DLS		+	++	++	++	o	-	-	-
	SAXS	5	+	+	+	-	_		+	0
Ensemble XRI	USS)	-	+	++	+	o	o		-
	XRD		+	+	+	-	_		+	-
	ALS		-	o	+	++	++	++	-	-
os			+	+	+	o	-			-
	FCS						_			
Integral	BET		+	+	+	+	+	0	o	-

Only EM and BET/VSSA cover the entire size range 1nm – 10µm.

Only EM and ALS measure large particles >10µm.

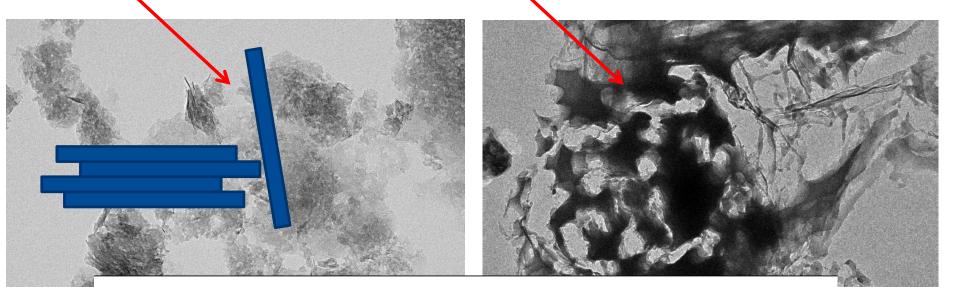
Few techniques access "primary particles". Most techniques access "smallest dispersible unit".

PROPOSAL 1: Counting requires validation

D BASF The Chemical Company

Counting result (CLS preferred*)	Classification
D50 < 100nm	Nano
D50 > 100nm	Non-nano If dispersion quality is validated**

* Validation of *technique* by nano and non-nano reference materials


** Validation of *dispersion* vs "smallest dispersable unit" by standardized dispersion protocol

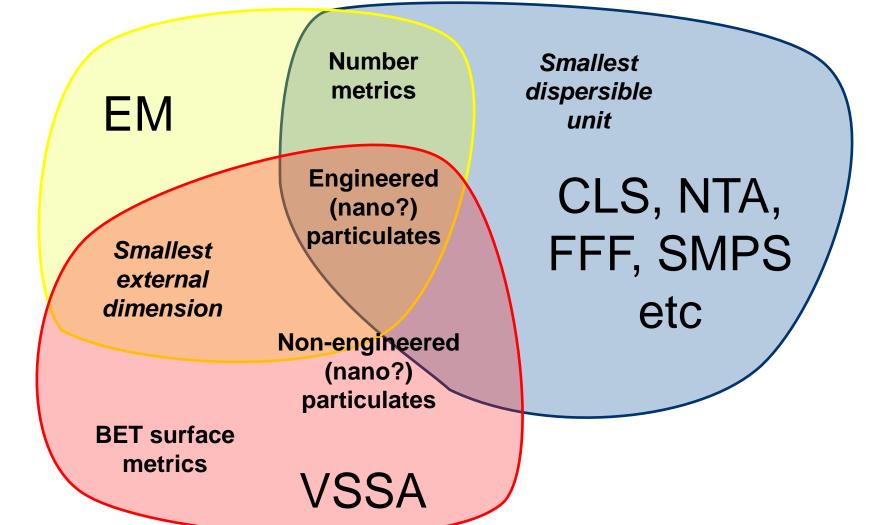
** Validation of *dispersion* vs "smallest external dimension" by baseline XRD, SAXS, EM, VSSA

Methods other than counting or EM required: solubles, reactives, platelet morphologies non-engineered particulates

500 nm

Review

All EHP content is accessible to individuals with disabilities. A fully accessible (Section 508–compliant) HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1306957.


Toward Advancing Nano-Object Count Metrology: A Best Practice Framework

Scott C. Brown,¹ Volodymyr Boyko,² Greg Meyers,³ Matthias Voetz,⁴ and Wendel Wohlleben²

200 nm

¹Corporate Center for Analytical Sciences, DuPont Central Research and Development, Wilmington, Delaware, USA; ²Material Physics, BASF SE, Ludwigshafen, Germany; ³Core R&D–Analytical Sciences, The Dow Chemical Company, Midland, Michigan, USA; ⁴Bayer Technology Services GmbH, Leverkusen, Germany

Interim summary on methods and policy options in the revision process

The Chemical Company

VSSA is unique for screening

VSSA = Volume-Specific Surface Area = BET x density

Nanomaterial, if VSSA > 60 m²/cm³

- ☑ BET and density data are already available and specified
- \square 1nm 10µm size range
- Minimal sample preparation, works on agglomerates
- Works on soluble materials !
- ☑ 2 % of TEM costs / material
- Excellent reproducibility between producers, excellent enforceability

JRC report #2 explores VSSA validity and safety margins

- [VSSA] could be a reliable method of classification both as nanomaterial and non-nanomaterial.
- ... verification with appropriate baseline EM studies.
 - For needle-shaped particles, against a threshold value of 40 m²/cm³
 - For platelet/flake shaped particles against a threshold value of 20 m²/cm³
 - For non-porous particles with non-complex shapes a large "safety margin" would have to be used

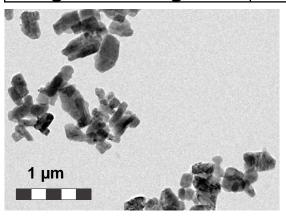
JRC SCIENCE AND POLICY REPORTS

Towards a review of the EC Recommendation for a definition of the term "nanomaterial"

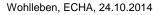
Part 2: Assessment of collected information concerning the experience with the definition

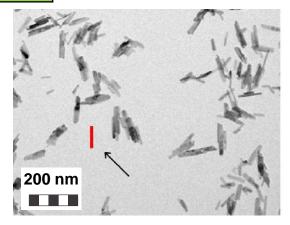
PROPOSAL 2: Screening by VSSA (powder substances)

Units of m ² /cm ³	Classification
VSSA > 60	Nano, unless "baseline EM" shows inner or coating porosity
60 > VSSA > M	Cannot decide by VSSA, need EM or validated counting on this specific product
M > VSSA > X	Non-nano, if "baseline EM" on similar products shows no extraordinary shape or bimodality
X > VSSA	Non-nano without any further evidence


The Chemical Company

JRC report #2: M= 20 (platelets) and 40 (fibers) BASF proposal X = 6 (uncertainty factor 10, easy to measure) BASF proposal X = 0.6 (uncertainty factor 100, equivalent to PM_{10} , but challenges measurement range of BET)


PROPOSAL 2: Screening by VSSA VSSA + baseline EM



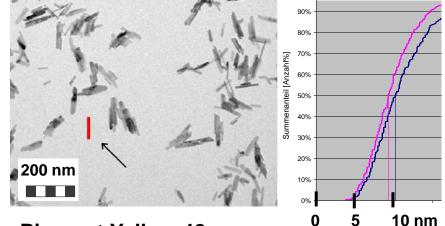
Color index	Baseline EM: Shape	VSSA / m²/cm³	
Pigment Yellow 42	Rod, agglom.	324	
Pigment Red 101	Rod, agglom.	419	
Pigment Yellow 139	Irregular particle	43	
Pigment Red 254 opaq	Irregular particle	24	
Pigment Red 254 trans	Irregular particle	153	
Pigment Blue 15:4	Irregular rod	103	
Pigment Orange 73	Platelet	30	

Pigment Yellow 139 Baseline EM \rightarrow irregular, agglom. particles

Pigment Yellow 42 Baseline EM → <u>agglomerated rods</u> (from JRC-report #2)

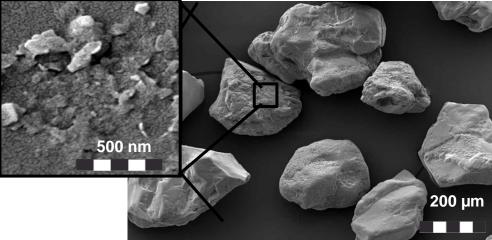
PROPOSAL 2: Screening by VSSA VSSA + baseline EM + counting EM validation M = 40 m²/cm³ also for agglomerated irregular shapes

Color index	Baseline EM: Shape	VSSA / m²/cm³	Counting EM: D50 / nm	
Pigment Yellow 42	Rod, agglom.	324	10	
Pigment Red 101	Rod, agglom.	419	9	
Pigment Yellow 139	Irregular particle	43	150	
Pigment Red 254 opaq	Irregular particle	24	233	
Pigment Red 254 trans	Irregular particle	153	36	
Pigment Blue 15:4	Irregular rod	103	30	
Pigment Orange 73	Platelet	30		


EM and VSSA provide same classification on engineered solid particulates

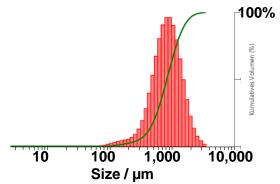
The Chemical Company

Baseline EM \rightarrow irregular, agglom. particles


Wohlleben, ECHA, 24.10.2014

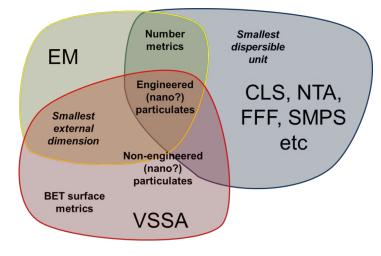
Pigment Yellow 42 Baseline EM → <u>agglomerated rods</u> (from JRC-report #2)

PROPOSAL 2: Screening by VSSA Macroscopic substances that are "usually <u>not</u> considered a nanomaterial" (JRC report #2) are classified <u>non-nano</u>


Sea-sand: large particulate removed by VSSA < X screening

The Chemical Company

mm-size polymer granulates:

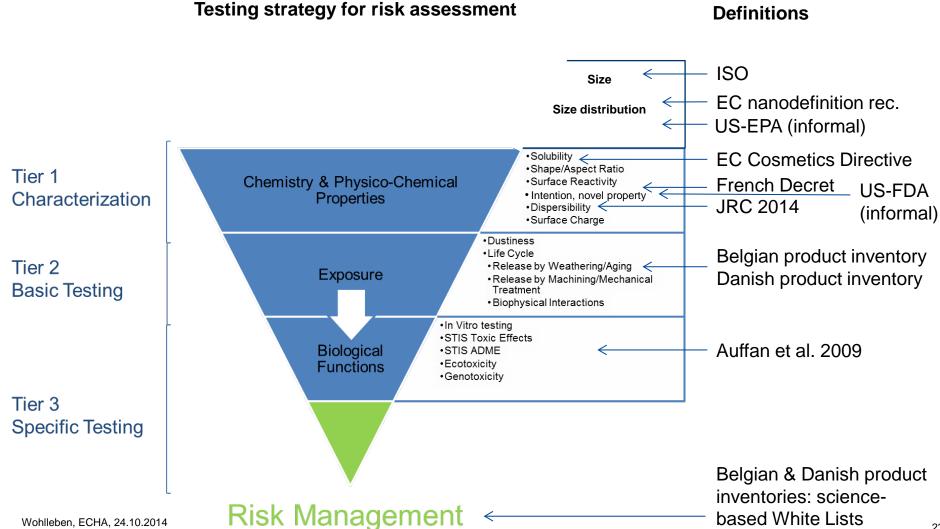


removed by VSSA < X screening

	BET [m ² /g]	VSSA [m ² /cm ³]
ULTRAMID B3M6 LS SCHWARZ 23213	<0.01	<0.012
ULTRAMID B3S UNGEFÄRBT	<0.01	<0.012
ULTRAMID B3WG10 SCHWARZ 564	<0.01	<0.012
ULTRABATCH 422	<0.01	<0.012

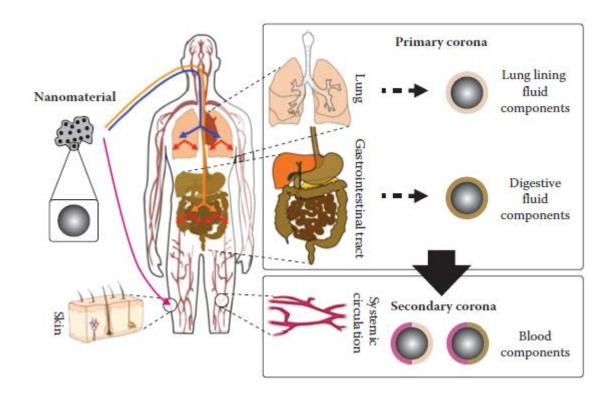
1,000s engineered pigments, fillers, anticaking agents

vs. 10,000s non-engineered waxes, polymer granulates, mortars, organics, dried salts, ...


EM and VSSA provide same classification on engineered particulates (pigment test cases)

VSSA screening reduces bycatch of large particulates, where nano-specific risk assessment does not work anyway (engineered or non-engineered)

Four guidance PROPOSALS, priority on:
 → Screening must allow simple & definite non-nano classification, e.g. VSSA with safety margins


D BASF The Chemical Company → Reproducibility of counting metrics requires either a standardised dispersion protocol or a validation against smallest dimensions.

Nano-specific risk assessment? Some consensus on relevant properties, even if definitions differ in properties, metrics, cut-offs

The Chemical Company

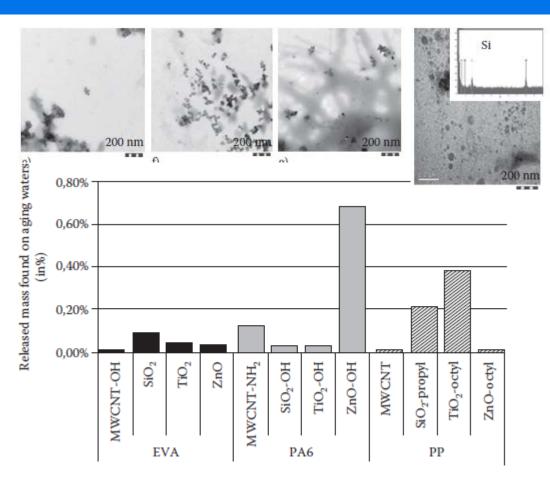
Dispersibility, Solubility are no intrinsic properties, but procedural phenomena related to specific scenarios of exposure

Christian A. Ruge, Marc Driessen, Andrea Haase, Ulrich F. Schaefer, Andreas Luch, and Claus-Michael Lehr pp 59 – 95 in ISBN 978-1-46-656786-3, **2014**.

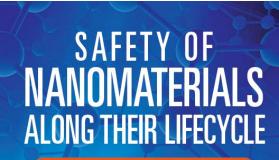
SAFETY OF NANOMATERIALS ALONG THEIR LIFECYCLE

The Chemical Company

Release, Exposure, and Human Hazards



EDITED BY Wendel Wohlleben ■ Thomas A. J. Kuhlbusch Jürgen Schnekenburger ■ Claus-Michael Lehr


435 pages, ISBN 978-1-46-656786-3

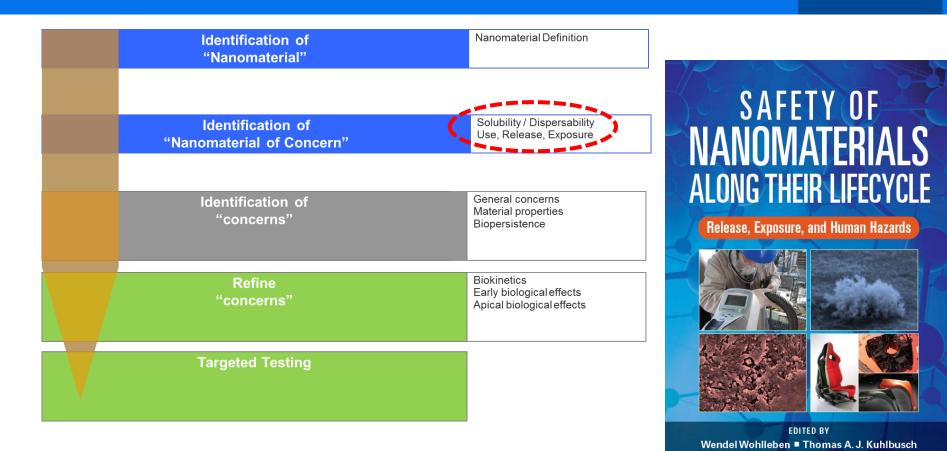
CRC Press

Release is measurable (\rightarrow NanoRelease round robins), but depends more on polymer matrix and scenario than on nanomaterial

Tinh Nguyen, Wendel Wohlleben and Lipiin Sung, pp 315 – 334 in ISBN 978-1-46-656786-3, **2014**.

The Chemical Company

Release, Exposure, and Human Hazards


EDITED BY Wendel Wohlleben ■ Thomas A. J. Kuhlbusch Jürgen Schnekenburger ■ Claus-Michael Lehr

435 pages, ISBN 978-1-46-656786-3

CRC Press

Release, Dispersibility, Solubility require a combined assessment as part of a testing strategy

BASF The Chemical Company

Agnes Oomen, Peter Bos, and Robert Landsiedel → talk Friday pp 358 – 379 in ISBN 978-1-46-656786-3, 2014.

Jürgen Schnekenburger ■ Claus-Michael Lehr

435 pages, ISBN 978-1-46-656786-3

Ackowledgements

C. Kranz, K. Wiench, P. Müller, R. Landsiedel, L. Ma-Hock
...and for stimulating discussions:
H. Rauscher, D. Gilliland, JRC-IHCP
S. Weigel, RIKILT + NanoDefine team
S.D. Brown, DuPont; M. Voetz, Bayer

nano🖪

Nano Pefine

Ĕ

SUN

MANAGING RISKS O

.NanoRelease

LABORT DABLE

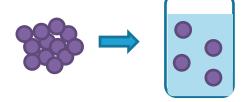
SAFETY OF NANOMATERIALS Along Their Lifecycle

Release, Exposure, and Human Hazards

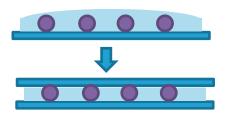
EDITED BY Wendel Wohlleben = Thomas A. J. Kuhlbusch Jürgen Schnekenburger = Claus-Michael Lehr

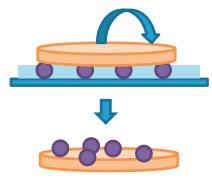
435 pages, ISBN 978-1-46-656786-3

Clarifications required for materials that are no mono-constituent powders.

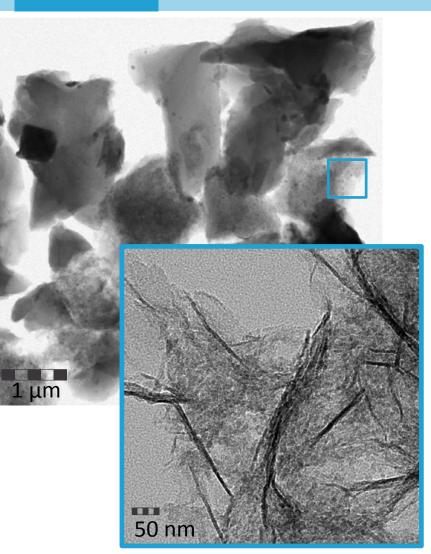

- JRC report #2 considers revision from "material <u>containing</u> particles" to "material <u>consisting</u> of particles".
 - PRO: a liquid chemical containing 1 nanoparticle is non-nano
 - CONTRA: new uncertainty created by "functionality": If nanoparticles are suspended in water + additives, is this product non-nano?
- BASF: In formulations, non-particulate components ruin image evaluation

- → PROPOSAL 3: Assess mixtures and formulations by ingredients.
- → PROPOSAL 4: Mixtures, suspensions and formulations are nanomaterials, if one or more <u>ingredient</u> is a nanomaterial, and if these ingredients constitute more than N% of the solids mass.


(*CLP*: *N* = 1% or 0.1%)


TEM Sample preparation also requires dispersion, has in general uncertain representativeness

1. dispersion of powder (e.g. water, ethanol)



2. wetting of glass microscope slide

3. transfer to ultra-thin TEM grid + evaporation of water/ethanol

TEM Image evaluation strategy

BASE

The Chemical Company

! automation e.g. by Olympus/SIS iTEM software impossible (common case) !

\rightarrow manual evaluation by trained lab-team

- 1. detection of different phases/ size categories
- 2. large fraction might be negligible for number-based evaluation
- 3. screening of sample for representative position
- 4. complete evaluation of distinct area
- 5. remaining operator bias on choice of "smallest external dimension"
- number of evaluated particles depending on result: unambiguous results ~ 200 particles; borderline cases ~1000 particles