
OECD QSAR Toolbox Supporting Substance Hazard Assessment and REACH Registrations Experiences and Needs

René Hunziker – The Dow Chemical Company

Workshop on Use of QSAR Toolbox – Feedback from Industry Users and Development Needs

24th November 2011, ECHA, Helsinki

External Program: Research Collaborations & Partnerships

EPA

- Prototype toxicity pathway assessment
- NextGen Risk Assessment

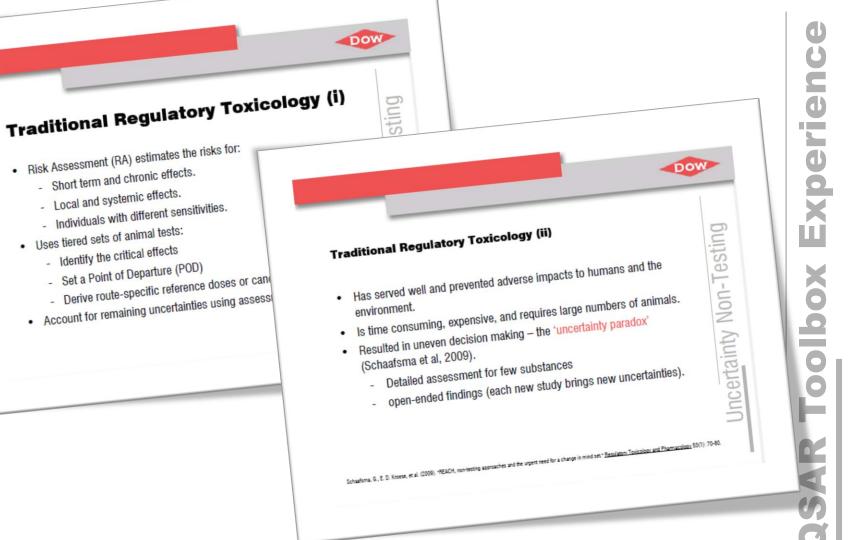
P&G

- Use of human cell lines, microarray and informatics for screening and read across

Givaudan

 Rapid in vitro assays for skin sensitization Unilever

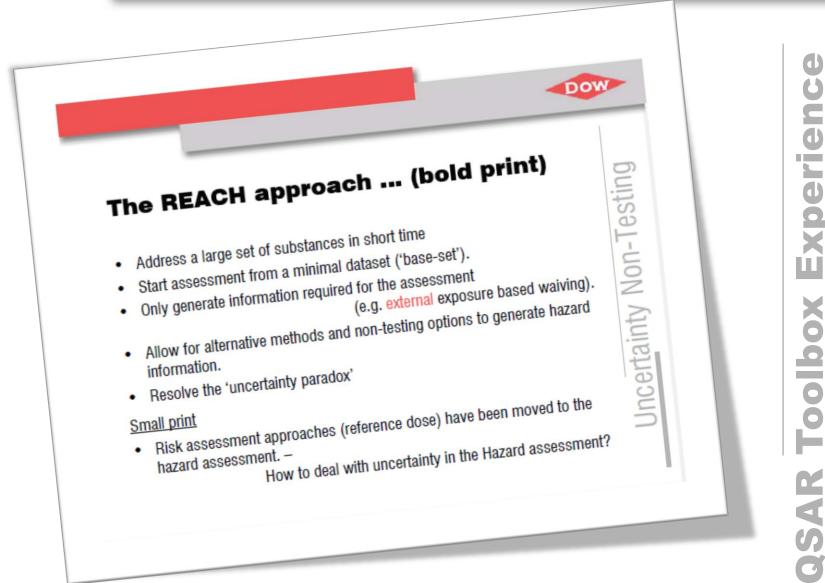
- Sharing of best practices


Hamner Institutes

- \$1MM/year x 5 years

OECD Toolbox Management Group.

- OECD QSAR Toolbox
- LMC Laboratory Mathematical Chemistry.
 - Improvement of predictive tools

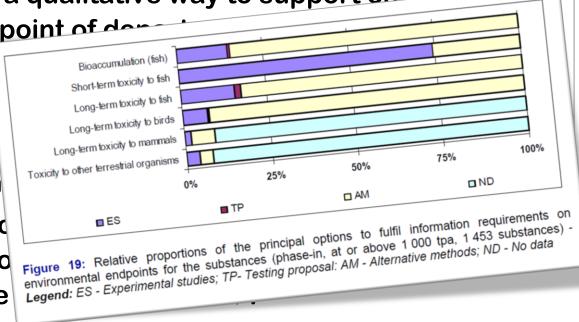


- Short term and chronic effects.

 - Local and systemic effects.
- Uses tiered sets of animal tests:
 - Identify the critical effects
 - Set a Point of Departure (POD)

Point of Departure

- Setubal Workshop OECD QSAR validation criteria.
- Ad-hoc QSAR group later on Toolbox Management Grp.
- CEFIC LRI sponsor projects:
 - Secretary of OECD Toolbox Management Group.
 - Building blocks for (Q)SAR decision support system AMBIT.
 - Metabolism prediction of industrial chemicals (OLIMPIC).
 - Reference Database for bioconcentration factors, BCF.
 - RepDose database and identification SAR alerts for substances with low NOELs.
 - Mechanism-based characterisation of systemic toxicity for substances employing in vitro toxicogenomics.


Use of QSAR under REACH 2010 – Dow

- Used for less complex endpoints where confidence in the result is high and
- By and large in a qualitative way to support choice of the (experimental) point of departure.
- QSAR is preferred for environmental endpoints; read across from analogue for mammalian endpoints. Very few categories.
- For complex endpoints, testing *or waiving* is preferred.
- When the endpoint is not considered relevant (e.g. absence of chronic exposure), the known unknown is preferred to the uncertain 'known'.

Use of QSAR under REACH 2010 – Dow

- Used for less complex endpoints where confidence in the result is high and
- By and large in a qualitative way to support choice of the (experimental) point of domain
- QSAR is preference
 across from an few categories
- For complex en
- When the endpo absence of chro preferred to the

The Use of Alternatives to Testing on Animals for the REACH Regulation – 2011:

Challenges under REACH today:

- i. 'Guidance barriers' to apply Dow's preferred process.
- ii. 'Off-the-shelf' solutions for relevant endpoints.
- iii. Lack of data and/or Art. 10/17 "legitimate possession or have permission to refer to *the full study report*"
- iv. Absence of toxicological findings to support hypothesis.
- v. 'Guidance barriers' for the use of categories
- vi. Cost impact of misclassification of potency vs. cost of testing.

Challenge i) Dow Process vs. REACH Guidance

- Dow process (defined list of endpoints):
 - 1. Define analogues by OECD QSAR Toolbox or SME.
 - 2. Process unknown and analogue through 2–3 'off-the-shelf' tools.
 - 3. Assess for domain and for performance of the analogues.
 - 4. Assess relevance of unknown domain **using Toolbox**. Perform assessment for 'unknown' using the best performing tool under 3) or use analogues within Toolbox.
- **REACH Guidance would imply:**
 - 1. Verify QMRF for 2–3 tools.
 - 2. Fill in QPRF for 2–3 results and write 2–3 RS on QPRF to meet Technical Completeness Check.
 - 3. Write 'WOE' summarising 2–3 results.

Challenge ii) 'off-the-shelf' Solutions vs. Toolbox

Currently Supported endpoints for regulatory use:

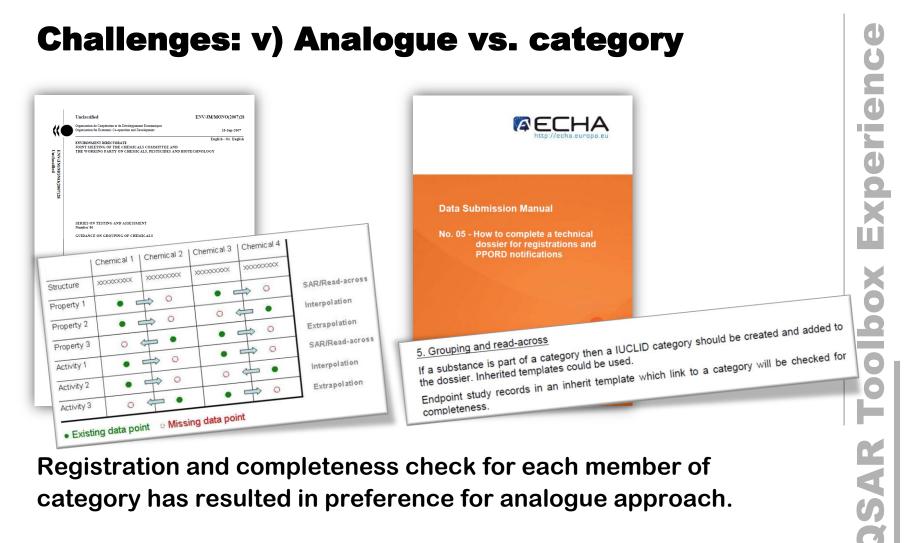
1. Env. fate and tox:

Log Kow, log Koc, pKa, solubility, acute aquatic tox, BCF, (ready) biodegradability.

2. Human Health Hazards: Metabolism (!), ADME, Skin and eye irritation, Skin Sensitisation, in vitro genotoxicity.

Read Across:

- 'Worst Case': (reactive) starting material to reaction mass (e.g. monomer to NLP). Sufficient for risk management, not sufficient for C&L of 'REACH substance'
- 2. 'Realistic' based on 'immediate' metabolism to common systemic exposure.


Challenge iii) Lack of data and study access requirement

Challenge iv) Absence of toxicological findings to support hypothesis

Molecule/ Effect	28d oral NOEL/NOAEL [mg/kg/d]			
	A-EO ₃ -PO ₂	B-EO ₅	C-EO₂-PO₂	D-PO ₅
Liver weight ↑ <10%	1000		1000	1000
Blood	≥1000		≥ 1000	≥1000
Urine	≥ 1000		≥ 1000	≥1000
Body weight	≥1000		≥1000	≥1000

Registration and completeness check for each member of category has resulted in preference for analogue approach.

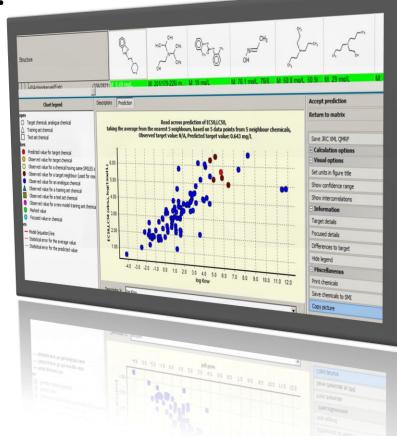
Challenges: vi) Cost of misclassification vs. cost of testing.

- Requirements from hazard classification based regulation
 - Transport and storage
 - End of life treatment
 - Emergency preparedness have significant cost impact.
- Cost of testing are compared against those expenses.

Opportunities today approved

Applications:

- Impurities
 - PBT
 - Food migrants
 - Pesticides
- Candidate Chemicals
 screening
 - R&D molecules
 - Supplier materials



Opportunities today

Strengths of the Toolbox:

- Extremely versatile: From very specific, user lead, single molecule to batch processing.
- Transparency: Training data, model assumptions, model, outliers, ...
- Importing, exporting, reporting.

READY NOV

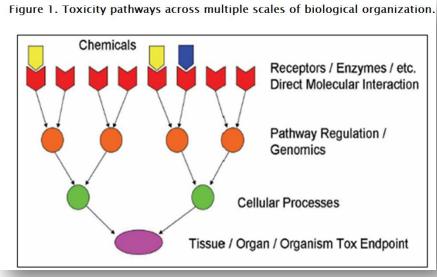


MUST HAVE!

Opportunities today and in the uture

REACH Registration Data

- Published on e-chem portal (and ECHA chem)
- Approx. 4000 substances
- Dissemination by Toolbox in line with ICCA GPS and welcomed by BIAC and CEFIC for non commercial uses.
- Identification of data holder to be resolved (3rd party trusty?).

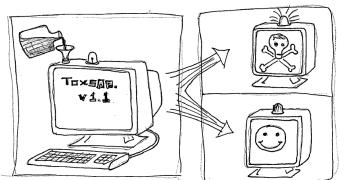


MUST HAVE!

Opportunities today and in the fi

The promise of the Adverse Outcome Pathway approach: Truly *novel* combination of

- Categorisation by initiating event.
- Mechanistic database (receptor binding, genomics, ...).
- Customisable hierarchical structure.
- Apical effect concentration database.
- Immediate feedback on the 'working hypothesis' for the family under consideration.

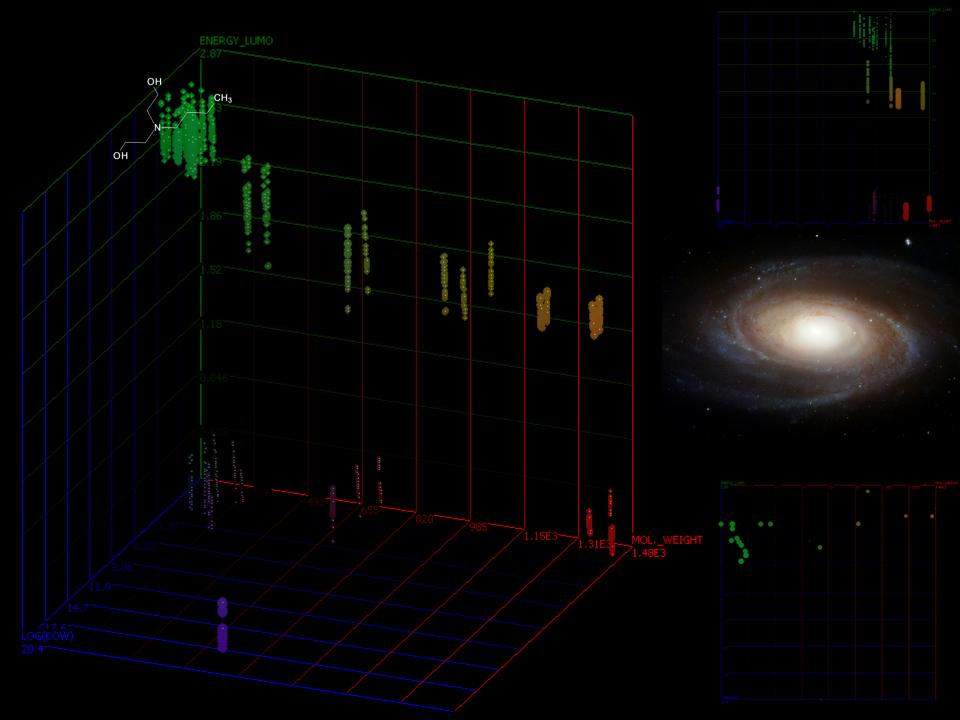


U.S. EPA, National Center for Environmental Research Computational Toxicology: Biologically-Based Multi-Scale Modeling

Opportunities today and in the future

- Anker points: Proof of category across endpoints, (including the unknown).
- Data processing/aggregating
 - # positives / # negatives per sub-category
 - Category / subcategory statistics
- In IUCLID: Updated 'study summary' to report predictive results (multiple summary templates to choose from).
- More data ...
- More and relevant profilers

Use of Toolbox in Candidate Screening


Family of Amine hydrophobes: R1-N (-R2)-R3-OH

Endpoints of interest:

- aquatic toxicity,
- Ready biodegradation
- Generic toxicity.

Approach chosen:

- Domain assessment and candidate selection (Domain manager LMC).
- QSAR assessment using 'off-the-shelf' tools, e.g, ECOSAR. CATABOL
- Investigate opportunities for sub-categorisation and test hypothesis in multiple species
- Zebrafish embryo test (ZET).

Conclusion

- Toolbox has emerged and has surpassed its initial vision.
- The increase in available data makes it to one of the preferred tools for experienced users for non-regulatory assessments.
- IP of data, acceptability of results, and complexity of apical endpoints are barriers for the use of the toolbox under REACH.
- Customisable integration of AOP concepts and HTP data will boost the use of HTP data and hopefully crack the door to reading across for complex apical endpoints.

Thank you for your attention